ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpeq0 GIF version

Theorem sqxpeq0 5054
Description: A Cartesian square is empty iff its member is empty. (Contributed by Jim Kingdon, 21-Apr-2023.)
Assertion
Ref Expression
sqxpeq0 ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅)

Proof of Theorem sqxpeq0
StepHypRef Expression
1 dmeq 4829 . . 3 ((𝐴 × 𝐴) = ∅ → dom (𝐴 × 𝐴) = dom ∅)
2 dmxpid 4850 . . 3 dom (𝐴 × 𝐴) = 𝐴
3 dm0 4843 . . 3 dom ∅ = ∅
41, 2, 33eqtr3g 2233 . 2 ((𝐴 × 𝐴) = ∅ → 𝐴 = ∅)
5 xpeq0r 5053 . . 3 ((𝐴 = ∅ ∨ 𝐴 = ∅) → (𝐴 × 𝐴) = ∅)
65orcs 735 . 2 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
74, 6impbii 126 1 ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  c0 3424   × cxp 4626  dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638
This theorem is referenced by:  metn0  13963
  Copyright terms: Public domain W3C validator