ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpeq0 GIF version

Theorem sqxpeq0 5152
Description: A Cartesian square is empty iff its member is empty. (Contributed by Jim Kingdon, 21-Apr-2023.)
Assertion
Ref Expression
sqxpeq0 ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅)

Proof of Theorem sqxpeq0
StepHypRef Expression
1 dmeq 4923 . . 3 ((𝐴 × 𝐴) = ∅ → dom (𝐴 × 𝐴) = dom ∅)
2 dmxpid 4945 . . 3 dom (𝐴 × 𝐴) = 𝐴
3 dm0 4937 . . 3 dom ∅ = ∅
41, 2, 33eqtr3g 2285 . 2 ((𝐴 × 𝐴) = ∅ → 𝐴 = ∅)
5 xpeq0r 5151 . . 3 ((𝐴 = ∅ ∨ 𝐴 = ∅) → (𝐴 × 𝐴) = ∅)
65orcs 740 . 2 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
74, 6impbii 126 1 ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  c0 3491   × cxp 4717  dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729
This theorem is referenced by:  metn0  15052
  Copyright terms: Public domain W3C validator