| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqxpeq0 | GIF version | ||
| Description: A Cartesian square is empty iff its member is empty. (Contributed by Jim Kingdon, 21-Apr-2023.) |
| Ref | Expression |
|---|---|
| sqxpeq0 | ⊢ ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 4897 | . . 3 ⊢ ((𝐴 × 𝐴) = ∅ → dom (𝐴 × 𝐴) = dom ∅) | |
| 2 | dmxpid 4918 | . . 3 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
| 3 | dm0 4911 | . . 3 ⊢ dom ∅ = ∅ | |
| 4 | 1, 2, 3 | 3eqtr3g 2263 | . 2 ⊢ ((𝐴 × 𝐴) = ∅ → 𝐴 = ∅) |
| 5 | xpeq0r 5124 | . . 3 ⊢ ((𝐴 = ∅ ∨ 𝐴 = ∅) → (𝐴 × 𝐴) = ∅) | |
| 6 | 5 | orcs 737 | . 2 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 7 | 4, 6 | impbii 126 | 1 ⊢ ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∅c0 3468 × cxp 4691 dom cdm 4693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 |
| This theorem is referenced by: metn0 14965 |
| Copyright terms: Public domain | W3C validator |