Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqxpeq0 | GIF version |
Description: A Cartesian square is empty iff its member is empty. (Contributed by Jim Kingdon, 21-Apr-2023.) |
Ref | Expression |
---|---|
sqxpeq0 | ⊢ ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 4785 | . . 3 ⊢ ((𝐴 × 𝐴) = ∅ → dom (𝐴 × 𝐴) = dom ∅) | |
2 | dmxpid 4806 | . . 3 ⊢ dom (𝐴 × 𝐴) = 𝐴 | |
3 | dm0 4799 | . . 3 ⊢ dom ∅ = ∅ | |
4 | 1, 2, 3 | 3eqtr3g 2213 | . 2 ⊢ ((𝐴 × 𝐴) = ∅ → 𝐴 = ∅) |
5 | xpeq0r 5007 | . . 3 ⊢ ((𝐴 = ∅ ∨ 𝐴 = ∅) → (𝐴 × 𝐴) = ∅) | |
6 | 5 | orcs 725 | . 2 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
7 | 4, 6 | impbii 125 | 1 ⊢ ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1335 ∅c0 3394 × cxp 4583 dom cdm 4585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4591 df-rel 4592 df-cnv 4593 df-dm 4595 |
This theorem is referenced by: metn0 12749 |
Copyright terms: Public domain | W3C validator |