ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpeq0 GIF version

Theorem sqxpeq0 5105
Description: A Cartesian square is empty iff its member is empty. (Contributed by Jim Kingdon, 21-Apr-2023.)
Assertion
Ref Expression
sqxpeq0 ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅)

Proof of Theorem sqxpeq0
StepHypRef Expression
1 dmeq 4877 . . 3 ((𝐴 × 𝐴) = ∅ → dom (𝐴 × 𝐴) = dom ∅)
2 dmxpid 4898 . . 3 dom (𝐴 × 𝐴) = 𝐴
3 dm0 4891 . . 3 dom ∅ = ∅
41, 2, 33eqtr3g 2260 . 2 ((𝐴 × 𝐴) = ∅ → 𝐴 = ∅)
5 xpeq0r 5104 . . 3 ((𝐴 = ∅ ∨ 𝐴 = ∅) → (𝐴 × 𝐴) = ∅)
65orcs 736 . 2 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
74, 6impbii 126 1 ((𝐴 × 𝐴) = ∅ ↔ 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1372  c0 3459   × cxp 4672  dom cdm 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-dm 4684
This theorem is referenced by:  metn0  14821
  Copyright terms: Public domain W3C validator