ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssct Unicode version

Theorem ssct 6820
Description: A subset of a set dominated by  om is dominated by  om. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
ssct  |-  ( ( A  C_  B  /\  B  ~<_  om )  ->  A  ~<_  om )

Proof of Theorem ssct
StepHypRef Expression
1 ctex 6755 . . . 4  |-  ( B  ~<_  om  ->  B  e.  _V )
2 ssdomg 6780 . . . 4  |-  ( B  e.  _V  ->  ( A  C_  B  ->  A  ~<_  B ) )
31, 2syl 14 . . 3  |-  ( B  ~<_  om  ->  ( A  C_  B  ->  A  ~<_  B ) )
43impcom 125 . 2  |-  ( ( A  C_  B  /\  B  ~<_  om )  ->  A  ~<_  B )
5 domtr 6787 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  om )  ->  A  ~<_  om )
64, 5sylancom 420 1  |-  ( ( A  C_  B  /\  B  ~<_  om )  ->  A  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   _Vcvv 2739    C_ wss 3131   class class class wbr 4005   omcom 4591    ~<_ cdom 6741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-dom 6744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator