ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssct Unicode version

Theorem ssct 6915
Description: A subset of a set dominated by  om is dominated by  om. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
ssct  |-  ( ( A  C_  B  /\  B  ~<_  om )  ->  A  ~<_  om )

Proof of Theorem ssct
StepHypRef Expression
1 ctex 6844 . . . 4  |-  ( B  ~<_  om  ->  B  e.  _V )
2 ssdomg 6872 . . . 4  |-  ( B  e.  _V  ->  ( A  C_  B  ->  A  ~<_  B ) )
31, 2syl 14 . . 3  |-  ( B  ~<_  om  ->  ( A  C_  B  ->  A  ~<_  B ) )
43impcom 125 . 2  |-  ( ( A  C_  B  /\  B  ~<_  om )  ->  A  ~<_  B )
5 domtr 6879 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  om )  ->  A  ~<_  om )
64, 5sylancom 420 1  |-  ( ( A  C_  B  /\  B  ~<_  om )  ->  A  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   _Vcvv 2772    C_ wss 3166   class class class wbr 4045   omcom 4639    ~<_ cdom 6828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-dom 6831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator