ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1domsn Unicode version

Theorem 1domsn 6666
Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
Assertion
Ref Expression
1domsn  |-  { A }  ~<_  1o

Proof of Theorem 1domsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6291 . . . 4  |-  (/)  e.  1o
21rgenw 2461 . . 3  |-  A. x  e.  { A } (/)  e.  1o
3 elsni 3511 . . . . . . 7  |-  ( x  e.  { A }  ->  x  =  A )
43adantr 272 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  A )
5 elsni 3511 . . . . . . 7  |-  ( y  e.  { A }  ->  y  =  A )
65adantl 273 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  y  =  A )
74, 6eqtr4d 2150 . . . . 5  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  y )
87a1d 22 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  ( (/)  =  (/)  ->  x  =  y ) )
98rgen2a 2460 . . 3  |-  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y )
10 eqid 2115 . . . 4  |-  ( x  e.  { A }  |->  (/) )  =  (
x  e.  { A }  |->  (/) )
11 eqidd 2116 . . . 4  |-  ( x  =  y  ->  (/)  =  (/) )
1210, 11f1mpt 5626 . . 3  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  <->  ( A. x  e.  { A } (/)  e.  1o  /\  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y ) ) )
132, 9, 12mpbir2an 909 . 2  |-  ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o
14 1oex 6275 . . 3  |-  1o  e.  _V
1514f1dom 6608 . 2  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  ->  { A }  ~<_  1o )
1613, 15ax-mp 7 1  |-  { A }  ~<_  1o
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   A.wral 2390   (/)c0 3329   {csn 3493   class class class wbr 3895    |-> cmpt 3949   -1-1->wf1 5078   1oc1o 6260    ~<_ cdom 6587
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-1o 6267  df-dom 6590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator