ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1domsn Unicode version

Theorem 1domsn 6873
Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
Assertion
Ref Expression
1domsn  |-  { A }  ~<_  1o

Proof of Theorem 1domsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6493 . . . 4  |-  (/)  e.  1o
21rgenw 2549 . . 3  |-  A. x  e.  { A } (/)  e.  1o
3 elsni 3636 . . . . . . 7  |-  ( x  e.  { A }  ->  x  =  A )
43adantr 276 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  A )
5 elsni 3636 . . . . . . 7  |-  ( y  e.  { A }  ->  y  =  A )
65adantl 277 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  y  =  A )
74, 6eqtr4d 2229 . . . . 5  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  y )
87a1d 22 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  ( (/)  =  (/)  ->  x  =  y ) )
98rgen2a 2548 . . 3  |-  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y )
10 eqid 2193 . . . 4  |-  ( x  e.  { A }  |->  (/) )  =  (
x  e.  { A }  |->  (/) )
11 eqidd 2194 . . . 4  |-  ( x  =  y  ->  (/)  =  (/) )
1210, 11f1mpt 5814 . . 3  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  <->  ( A. x  e.  { A } (/)  e.  1o  /\  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y ) ) )
132, 9, 12mpbir2an 944 . 2  |-  ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o
14 1oex 6477 . . 3  |-  1o  e.  _V
1514f1dom 6814 . 2  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  ->  { A }  ~<_  1o )
1613, 15ax-mp 5 1  |-  { A }  ~<_  1o
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   (/)c0 3446   {csn 3618   class class class wbr 4029    |-> cmpt 4090   -1-1->wf1 5251   1oc1o 6462    ~<_ cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-dom 6796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator