ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1domsn Unicode version

Theorem 1domsn 6785
Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
Assertion
Ref Expression
1domsn  |-  { A }  ~<_  1o

Proof of Theorem 1domsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6408 . . . 4  |-  (/)  e.  1o
21rgenw 2521 . . 3  |-  A. x  e.  { A } (/)  e.  1o
3 elsni 3594 . . . . . . 7  |-  ( x  e.  { A }  ->  x  =  A )
43adantr 274 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  A )
5 elsni 3594 . . . . . . 7  |-  ( y  e.  { A }  ->  y  =  A )
65adantl 275 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  y  =  A )
74, 6eqtr4d 2201 . . . . 5  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  y )
87a1d 22 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  ( (/)  =  (/)  ->  x  =  y ) )
98rgen2a 2520 . . 3  |-  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y )
10 eqid 2165 . . . 4  |-  ( x  e.  { A }  |->  (/) )  =  (
x  e.  { A }  |->  (/) )
11 eqidd 2166 . . . 4  |-  ( x  =  y  ->  (/)  =  (/) )
1210, 11f1mpt 5739 . . 3  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  <->  ( A. x  e.  { A } (/)  e.  1o  /\  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y ) ) )
132, 9, 12mpbir2an 932 . 2  |-  ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o
14 1oex 6392 . . 3  |-  1o  e.  _V
1514f1dom 6726 . 2  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  ->  { A }  ~<_  1o )
1613, 15ax-mp 5 1  |-  { A }  ~<_  1o
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   (/)c0 3409   {csn 3576   class class class wbr 3982    |-> cmpt 4043   -1-1->wf1 5185   1oc1o 6377    ~<_ cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-dom 6708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator