ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1domsn Unicode version

Theorem 1domsn 6776
Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
Assertion
Ref Expression
1domsn  |-  { A }  ~<_  1o

Proof of Theorem 1domsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6399 . . . 4  |-  (/)  e.  1o
21rgenw 2519 . . 3  |-  A. x  e.  { A } (/)  e.  1o
3 elsni 3588 . . . . . . 7  |-  ( x  e.  { A }  ->  x  =  A )
43adantr 274 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  A )
5 elsni 3588 . . . . . . 7  |-  ( y  e.  { A }  ->  y  =  A )
65adantl 275 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  y  =  A )
74, 6eqtr4d 2200 . . . . 5  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  y )
87a1d 22 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  ( (/)  =  (/)  ->  x  =  y ) )
98rgen2a 2518 . . 3  |-  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y )
10 eqid 2164 . . . 4  |-  ( x  e.  { A }  |->  (/) )  =  (
x  e.  { A }  |->  (/) )
11 eqidd 2165 . . . 4  |-  ( x  =  y  ->  (/)  =  (/) )
1210, 11f1mpt 5733 . . 3  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  <->  ( A. x  e.  { A } (/)  e.  1o  /\  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y ) ) )
132, 9, 12mpbir2an 931 . 2  |-  ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o
14 1oex 6383 . . 3  |-  1o  e.  _V
1514f1dom 6717 . 2  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  ->  { A }  ~<_  1o )
1613, 15ax-mp 5 1  |-  { A }  ~<_  1o
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   A.wral 2442   (/)c0 3404   {csn 3570   class class class wbr 3976    |-> cmpt 4037   -1-1->wf1 5179   1oc1o 6368    ~<_ cdom 6696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1o 6375  df-dom 6699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator