ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1domsn Unicode version

Theorem 1domsn 6720
Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
Assertion
Ref Expression
1domsn  |-  { A }  ~<_  1o

Proof of Theorem 1domsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6344 . . . 4  |-  (/)  e.  1o
21rgenw 2490 . . 3  |-  A. x  e.  { A } (/)  e.  1o
3 elsni 3549 . . . . . . 7  |-  ( x  e.  { A }  ->  x  =  A )
43adantr 274 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  A )
5 elsni 3549 . . . . . . 7  |-  ( y  e.  { A }  ->  y  =  A )
65adantl 275 . . . . . 6  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  y  =  A )
74, 6eqtr4d 2176 . . . . 5  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  x  =  y )
87a1d 22 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  ( (/)  =  (/)  ->  x  =  y ) )
98rgen2a 2489 . . 3  |-  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y )
10 eqid 2140 . . . 4  |-  ( x  e.  { A }  |->  (/) )  =  (
x  e.  { A }  |->  (/) )
11 eqidd 2141 . . . 4  |-  ( x  =  y  ->  (/)  =  (/) )
1210, 11f1mpt 5679 . . 3  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  <->  ( A. x  e.  { A } (/)  e.  1o  /\  A. x  e.  { A } A. y  e.  { A }  ( (/)  =  (/)  ->  x  =  y ) ) )
132, 9, 12mpbir2an 927 . 2  |-  ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o
14 1oex 6328 . . 3  |-  1o  e.  _V
1514f1dom 6661 . 2  |-  ( ( x  e.  { A }  |->  (/) ) : { A } -1-1-> 1o  ->  { A }  ~<_  1o )
1613, 15ax-mp 5 1  |-  { A }  ~<_  1o
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   (/)c0 3367   {csn 3531   class class class wbr 3936    |-> cmpt 3996   -1-1->wf1 5127   1oc1o 6313    ~<_ cdom 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-iord 4295  df-on 4297  df-suc 4300  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-1o 6320  df-dom 6643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator