ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domtr Unicode version

Theorem domtr 6763
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
domtr  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )

Proof of Theorem domtr
Dummy variables  x  y  z  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6723 . 2  |-  Rel  ~<_
2 vex 2733 . . . 4  |-  y  e. 
_V
32brdom 6728 . . 3  |-  ( x  ~<_  y  <->  E. g  g : x -1-1-> y )
4 vex 2733 . . . 4  |-  z  e. 
_V
54brdom 6728 . . 3  |-  ( y  ~<_  z  <->  E. f  f : y -1-1-> z )
6 eeanv 1925 . . . 4  |-  ( E. g E. f ( g : x -1-1-> y  /\  f : y
-1-1-> z )  <->  ( E. g  g : x
-1-1-> y  /\  E. f 
f : y -1-1-> z ) )
7 f1co 5415 . . . . . . . 8  |-  ( ( f : y -1-1-> z  /\  g : x
-1-1-> y )  ->  (
f  o.  g ) : x -1-1-> z )
87ancoms 266 . . . . . . 7  |-  ( ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  (
f  o.  g ) : x -1-1-> z )
9 vex 2733 . . . . . . . . 9  |-  f  e. 
_V
10 vex 2733 . . . . . . . . 9  |-  g  e. 
_V
119, 10coex 5156 . . . . . . . 8  |-  ( f  o.  g )  e. 
_V
12 f1eq1 5398 . . . . . . . 8  |-  ( h  =  ( f  o.  g )  ->  (
h : x -1-1-> z  <-> 
( f  o.  g
) : x -1-1-> z ) )
1311, 12spcev 2825 . . . . . . 7  |-  ( ( f  o.  g ) : x -1-1-> z  ->  E. h  h :
x -1-1-> z )
148, 13syl 14 . . . . . 6  |-  ( ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  E. h  h : x -1-1-> z )
154brdom 6728 . . . . . 6  |-  ( x  ~<_  z  <->  E. h  h : x -1-1-> z )
1614, 15sylibr 133 . . . . 5  |-  ( ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  x  ~<_  z )
1716exlimivv 1889 . . . 4  |-  ( E. g E. f ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  x  ~<_  z )
186, 17sylbir 134 . . 3  |-  ( ( E. g  g : x -1-1-> y  /\  E. f  f : y
-1-1-> z )  ->  x  ~<_  z )
193, 5, 18syl2anb 289 . 2  |-  ( ( x  ~<_  y  /\  y  ~<_  z )  ->  x  ~<_  z )
201, 19vtoclr 4659 1  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1485   class class class wbr 3989    o. ccom 4615   -1-1->wf1 5195    ~<_ cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-dom 6720
This theorem is referenced by:  endomtr  6768  domentr  6769  cnvct  6787  ssct  6796  nndomo  6842  infnfi  6873  xpct  12351
  Copyright terms: Public domain W3C validator