| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domtr | Unicode version | ||
| Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| domtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 6804 |
. 2
| |
| 2 | vex 2766 |
. . . 4
| |
| 3 | 2 | brdom 6809 |
. . 3
|
| 4 | vex 2766 |
. . . 4
| |
| 5 | 4 | brdom 6809 |
. . 3
|
| 6 | eeanv 1951 |
. . . 4
| |
| 7 | f1co 5475 |
. . . . . . . 8
| |
| 8 | 7 | ancoms 268 |
. . . . . . 7
|
| 9 | vex 2766 |
. . . . . . . . 9
| |
| 10 | vex 2766 |
. . . . . . . . 9
| |
| 11 | 9, 10 | coex 5215 |
. . . . . . . 8
|
| 12 | f1eq1 5458 |
. . . . . . . 8
| |
| 13 | 11, 12 | spcev 2859 |
. . . . . . 7
|
| 14 | 8, 13 | syl 14 |
. . . . . 6
|
| 15 | 4 | brdom 6809 |
. . . . . 6
|
| 16 | 14, 15 | sylibr 134 |
. . . . 5
|
| 17 | 16 | exlimivv 1911 |
. . . 4
|
| 18 | 6, 17 | sylbir 135 |
. . 3
|
| 19 | 3, 5, 18 | syl2anb 291 |
. 2
|
| 20 | 1, 19 | vtoclr 4711 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-dom 6801 |
| This theorem is referenced by: endomtr 6849 domentr 6850 cnvct 6868 ssct 6877 nndomo 6925 infnfi 6956 xpct 12613 |
| Copyright terms: Public domain | W3C validator |