ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domtr Unicode version

Theorem domtr 6937
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
domtr  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )

Proof of Theorem domtr
Dummy variables  x  y  z  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6892 . 2  |-  Rel  ~<_
2 vex 2802 . . . 4  |-  y  e. 
_V
32brdom 6899 . . 3  |-  ( x  ~<_  y  <->  E. g  g : x -1-1-> y )
4 vex 2802 . . . 4  |-  z  e. 
_V
54brdom 6899 . . 3  |-  ( y  ~<_  z  <->  E. f  f : y -1-1-> z )
6 eeanv 1983 . . . 4  |-  ( E. g E. f ( g : x -1-1-> y  /\  f : y
-1-1-> z )  <->  ( E. g  g : x
-1-1-> y  /\  E. f 
f : y -1-1-> z ) )
7 f1co 5543 . . . . . . . 8  |-  ( ( f : y -1-1-> z  /\  g : x
-1-1-> y )  ->  (
f  o.  g ) : x -1-1-> z )
87ancoms 268 . . . . . . 7  |-  ( ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  (
f  o.  g ) : x -1-1-> z )
9 vex 2802 . . . . . . . . 9  |-  f  e. 
_V
10 vex 2802 . . . . . . . . 9  |-  g  e. 
_V
119, 10coex 5274 . . . . . . . 8  |-  ( f  o.  g )  e. 
_V
12 f1eq1 5526 . . . . . . . 8  |-  ( h  =  ( f  o.  g )  ->  (
h : x -1-1-> z  <-> 
( f  o.  g
) : x -1-1-> z ) )
1311, 12spcev 2898 . . . . . . 7  |-  ( ( f  o.  g ) : x -1-1-> z  ->  E. h  h :
x -1-1-> z )
148, 13syl 14 . . . . . 6  |-  ( ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  E. h  h : x -1-1-> z )
154brdom 6899 . . . . . 6  |-  ( x  ~<_  z  <->  E. h  h : x -1-1-> z )
1614, 15sylibr 134 . . . . 5  |-  ( ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  x  ~<_  z )
1716exlimivv 1943 . . . 4  |-  ( E. g E. f ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  x  ~<_  z )
186, 17sylbir 135 . . 3  |-  ( ( E. g  g : x -1-1-> y  /\  E. f  f : y
-1-1-> z )  ->  x  ~<_  z )
193, 5, 18syl2anb 291 . 2  |-  ( ( x  ~<_  y  /\  y  ~<_  z )  ->  x  ~<_  z )
201, 19vtoclr 4767 1  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1538   class class class wbr 4083    o. ccom 4723   -1-1->wf1 5315    ~<_ cdom 6886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-dom 6889
This theorem is referenced by:  endomtr  6942  domentr  6943  cnvct  6962  ssct  6975  nndomo  7025  infnfi  7057  xpct  12967
  Copyright terms: Public domain W3C validator