Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > domtr | Unicode version |
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
domtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 6723 | . 2 | |
2 | vex 2733 | . . . 4 | |
3 | 2 | brdom 6728 | . . 3 |
4 | vex 2733 | . . . 4 | |
5 | 4 | brdom 6728 | . . 3 |
6 | eeanv 1925 | . . . 4 | |
7 | f1co 5415 | . . . . . . . 8 | |
8 | 7 | ancoms 266 | . . . . . . 7 |
9 | vex 2733 | . . . . . . . . 9 | |
10 | vex 2733 | . . . . . . . . 9 | |
11 | 9, 10 | coex 5156 | . . . . . . . 8 |
12 | f1eq1 5398 | . . . . . . . 8 | |
13 | 11, 12 | spcev 2825 | . . . . . . 7 |
14 | 8, 13 | syl 14 | . . . . . 6 |
15 | 4 | brdom 6728 | . . . . . 6 |
16 | 14, 15 | sylibr 133 | . . . . 5 |
17 | 16 | exlimivv 1889 | . . . 4 |
18 | 6, 17 | sylbir 134 | . . 3 |
19 | 3, 5, 18 | syl2anb 289 | . 2 |
20 | 1, 19 | vtoclr 4659 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1485 class class class wbr 3989 ccom 4615 wf1 5195 cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-dom 6720 |
This theorem is referenced by: endomtr 6768 domentr 6769 cnvct 6787 ssct 6796 nndomo 6842 infnfi 6873 xpct 12351 |
Copyright terms: Public domain | W3C validator |