ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domtr Unicode version

Theorem domtr 6751
Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
domtr  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )

Proof of Theorem domtr
Dummy variables  x  y  z  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6711 . 2  |-  Rel  ~<_
2 vex 2729 . . . 4  |-  y  e. 
_V
32brdom 6716 . . 3  |-  ( x  ~<_  y  <->  E. g  g : x -1-1-> y )
4 vex 2729 . . . 4  |-  z  e. 
_V
54brdom 6716 . . 3  |-  ( y  ~<_  z  <->  E. f  f : y -1-1-> z )
6 eeanv 1920 . . . 4  |-  ( E. g E. f ( g : x -1-1-> y  /\  f : y
-1-1-> z )  <->  ( E. g  g : x
-1-1-> y  /\  E. f 
f : y -1-1-> z ) )
7 f1co 5405 . . . . . . . 8  |-  ( ( f : y -1-1-> z  /\  g : x
-1-1-> y )  ->  (
f  o.  g ) : x -1-1-> z )
87ancoms 266 . . . . . . 7  |-  ( ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  (
f  o.  g ) : x -1-1-> z )
9 vex 2729 . . . . . . . . 9  |-  f  e. 
_V
10 vex 2729 . . . . . . . . 9  |-  g  e. 
_V
119, 10coex 5149 . . . . . . . 8  |-  ( f  o.  g )  e. 
_V
12 f1eq1 5388 . . . . . . . 8  |-  ( h  =  ( f  o.  g )  ->  (
h : x -1-1-> z  <-> 
( f  o.  g
) : x -1-1-> z ) )
1311, 12spcev 2821 . . . . . . 7  |-  ( ( f  o.  g ) : x -1-1-> z  ->  E. h  h :
x -1-1-> z )
148, 13syl 14 . . . . . 6  |-  ( ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  E. h  h : x -1-1-> z )
154brdom 6716 . . . . . 6  |-  ( x  ~<_  z  <->  E. h  h : x -1-1-> z )
1614, 15sylibr 133 . . . . 5  |-  ( ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  x  ~<_  z )
1716exlimivv 1884 . . . 4  |-  ( E. g E. f ( g : x -1-1-> y  /\  f : y
-1-1-> z )  ->  x  ~<_  z )
186, 17sylbir 134 . . 3  |-  ( ( E. g  g : x -1-1-> y  /\  E. f  f : y
-1-1-> z )  ->  x  ~<_  z )
193, 5, 18syl2anb 289 . 2  |-  ( ( x  ~<_  y  /\  y  ~<_  z )  ->  x  ~<_  z )
201, 19vtoclr 4652 1  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1480   class class class wbr 3982    o. ccom 4608   -1-1->wf1 5185    ~<_ cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-dom 6708
This theorem is referenced by:  endomtr  6756  domentr  6757  cnvct  6775  ssct  6784  nndomo  6830  infnfi  6861  xpct  12329
  Copyright terms: Public domain W3C validator