| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domtr | Unicode version | ||
| Description: Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| domtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 6834 |
. 2
| |
| 2 | vex 2775 |
. . . 4
| |
| 3 | 2 | brdom 6841 |
. . 3
|
| 4 | vex 2775 |
. . . 4
| |
| 5 | 4 | brdom 6841 |
. . 3
|
| 6 | eeanv 1960 |
. . . 4
| |
| 7 | f1co 5495 |
. . . . . . . 8
| |
| 8 | 7 | ancoms 268 |
. . . . . . 7
|
| 9 | vex 2775 |
. . . . . . . . 9
| |
| 10 | vex 2775 |
. . . . . . . . 9
| |
| 11 | 9, 10 | coex 5229 |
. . . . . . . 8
|
| 12 | f1eq1 5478 |
. . . . . . . 8
| |
| 13 | 11, 12 | spcev 2868 |
. . . . . . 7
|
| 14 | 8, 13 | syl 14 |
. . . . . 6
|
| 15 | 4 | brdom 6841 |
. . . . . 6
|
| 16 | 14, 15 | sylibr 134 |
. . . . 5
|
| 17 | 16 | exlimivv 1920 |
. . . 4
|
| 18 | 6, 17 | sylbir 135 |
. . 3
|
| 19 | 3, 5, 18 | syl2anb 291 |
. 2
|
| 20 | 1, 19 | vtoclr 4724 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-dom 6831 |
| This theorem is referenced by: endomtr 6884 domentr 6885 cnvct 6903 ssct 6915 nndomo 6963 infnfi 6994 xpct 12800 |
| Copyright terms: Public domain | W3C validator |