HomeHome Intuitionistic Logic Explorer
Theorem List (p. 69 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6801-6900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremixpsnval 6801* The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
 |-  ( X  e.  V  -> 
 X_ x  e.  { X } B  =  {
 f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ B ) }
 )
 
Theoremelixp2 6802* Membership in an infinite Cartesian product. See df-ixp 6799 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
 |-  ( F  e.  X_ x  e.  A  B  <->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfvixp 6803* Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( x  =  C  ->  B  =  D )   =>    |-  ( ( F  e.  X_ x  e.  A  B  /\  C  e.  A ) 
 ->  ( F `  C )  e.  D )
 
Theoremixpfn 6804* A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
 |-  ( F  e.  X_ x  e.  A  B  ->  F  Fn  A )
 
Theoremelixp 6805* Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
 |-  F  e.  _V   =>    |-  ( F  e.  X_ x  e.  A  B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremelixpconst 6806* Membership in an infinite Cartesian product of a constant  B. (Contributed by NM, 12-Apr-2008.)
 |-  F  e.  _V   =>    |-  ( F  e.  X_ x  e.  A  B  <->  F : A --> B )
 
Theoremixpconstg 6807* Infinite Cartesian product of a constant  B. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  X_ x  e.  A  B  =  ( B  ^m  A ) )
 
Theoremixpconst 6808* Infinite Cartesian product of a constant  B. (Contributed by NM, 28-Sep-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  X_ x  e.  A  B  =  ( B  ^m  A )
 
Theoremixpeq1 6809* Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
 |-  ( A  =  B  -> 
 X_ x  e.  A  C  =  X_ x  e.  B  C )
 
Theoremixpeq1d 6810* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  X_ x  e.  A  C  =  X_ x  e.  B  C )
 
Theoremss2ixp 6811 Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
 |-  ( A. x  e.  A  B  C_  C  -> 
 X_ x  e.  A  B  C_  X_ x  e.  A  C )
 
Theoremixpeq2 6812 Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
 |-  ( A. x  e.  A  B  =  C  -> 
 X_ x  e.  A  B  =  X_ x  e.  A  C )
 
Theoremixpeq2dva 6813* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  X_ x  e.  A  B  =  X_ x  e.  A  C )
 
Theoremixpeq2dv 6814* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  X_ x  e.  A  B  =  X_ x  e.  A  C )
 
Theoremcbvixp 6815* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  X_ x  e.  A  B  =  X_ y  e.  A  C
 
Theoremcbvixpv 6816* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  X_ x  e.  A  B  =  X_ y  e.  A  C
 
Theoremnfixpxy 6817* Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
 |-  F/_ y A   &    |-  F/_ y B   =>    |-  F/_ y X_ x  e.  A  B
 
Theoremnfixp1 6818 The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x X_ x  e.  A  B
 
Theoremixpprc 6819* A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain  A, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
 |-  ( -.  A  e.  _V 
 ->  X_ x  e.  A  B  =  (/) )
 
Theoremixpf 6820* A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
 |-  ( F  e.  X_ x  e.  A  B  ->  F : A --> U_ x  e.  A  B )
 
Theoremuniixp 6821* The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |- 
 U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
 
Theoremixpexgg 6822* The existence of an infinite Cartesian product.  x is normally a free-variable parameter in 
B. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon, 15-Feb-2023.)
 |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  X_ x  e.  A  B  e.  _V )
 
Theoremixpin 6823* The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
 |-  X_ x  e.  A  ( B  i^i  C )  =  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C )
 
Theoremixpiinm 6824* The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
 |-  ( E. z  z  e.  B  ->  X_ x  e.  A  |^|_ y  e.  B  C  =  |^|_ y  e.  B  X_ x  e.  A  C )
 
Theoremixpintm 6825* The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
 |-  ( E. z  z  e.  B  ->  X_ x  e.  A  |^| B  =  |^|_ y  e.  B  X_ x  e.  A  y )
 
Theoremixp0x 6826 An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
 |-  X_ x  e.  (/)  A  =  { (/) }
 
Theoremixpssmap2g 6827* An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 6828 avoids ax-coll 4167. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( U_ x  e.  A  B  e.  V  -> 
 X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
 
Theoremixpssmapg 6828* An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
 |-  ( A. x  e.  A  B  e.  V  -> 
 X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
 
Theorem0elixp 6829 Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.)
 |-  (/)  e.  X_ x  e.  (/)  A
 
Theoremixpm 6830* If an infinite Cartesian product of a family  B ( x ) is inhabited, every  B ( x ) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
 |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A. x  e.  A  E. z  z  e.  B )
 
Theoremixp0 6831 The infinite Cartesian product of a family  B ( x ) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
 |-  ( E. x  e.  A  B  =  (/)  ->  X_ x  e.  A  B  =  (/) )
 
Theoremixpssmap 6832* An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
 |-  B  e.  _V   =>    |-  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A )
 
Theoremresixp 6833* Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
 |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  ( F  |`  B )  e.  X_ x  e.  B  C )
 
Theoremmptelixpg 6834* Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
 |-  ( I  e.  V  ->  ( ( x  e.  I  |->  J )  e.  X_ x  e.  I  K 
 <-> 
 A. x  e.  I  J  e.  K )
 )
 
Theoremelixpsn 6835* Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( A  e.  V  ->  ( F  e.  X_ x  e.  { A } B  <->  E. y  e.  B  F  =  { <. A ,  y >. } ) )
 
Theoremixpsnf1o 6836* A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )   =>    |-  ( I  e.  V  ->  F : A
 -1-1-onto-> X_ y  e.  { I } A )
 
Theoremmapsnf1o 6837* A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )   =>    |-  ( ( A  e.  V  /\  I  e.  W )  ->  F : A -1-1-onto-> ( A  ^m  { I } ) )
 
2.6.28  Equinumerosity
 
Syntaxcen 6838 Extend class definition to include the equinumerosity relation ("approximately equals" symbol)
 class  ~~
 
Syntaxcdom 6839 Extend class definition to include the dominance relation (curly less-than-or-equal)
 class  ~<_
 
Syntaxcfn 6840 Extend class definition to include the class of all finite sets.
 class  Fin
 
Definitiondf-en 6841* Define the equinumerosity relation. Definition of [Enderton] p. 129. We define  ~~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6848. (Contributed by NM, 28-Mar-1998.)
 |- 
 ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
 
Definitiondf-dom 6842* Define the dominance relation. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 6852 and domen 6853. (Contributed by NM, 28-Mar-1998.)
 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x -1-1-> y }
 
Definitiondf-fin 6843* Define the (proper) class of all finite sets. Similar to Definition 10.29 of [TakeutiZaring] p. 91, whose "Fin(a)" corresponds to our " a  e.  Fin". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 16050. (Contributed by NM, 22-Aug-2008.)
 |- 
 Fin  =  { x  |  E. y  e.  om  x  ~~  y }
 
Theoremrelen 6844 Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
 |- 
 Rel  ~~
 
Theoremreldom 6845 Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
 |- 
 Rel  ~<_
 
Theoremencv 6846 If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.)
 |-  ( A  ~~  B  ->  ( A  e.  _V  /\  B  e.  _V )
 )
 
Theorembreng 6847* Equinumerosity relation. This variation of bren 6848 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of bren 6848. (Revised by BTernaryTau, 23-Sep-2024.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~~  B 
 <-> 
 E. f  f : A -1-1-onto-> B ) )
 
Theorembren 6848* Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
 |-  ( A  ~~  B  <->  E. f  f : A -1-1-onto-> B )
 
Theorembrdom2g 6849* Dominance relation. This variation of brdomg 6850 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of brdomg 6850. (Revised by BTernaryTau, 29-Nov-2024.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~<_  B  <->  E. f  f : A -1-1-> B ) )
 
Theorembrdomg 6850* Dominance relation. (Contributed by NM, 15-Jun-1998.)
 |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. f  f : A -1-1-> B ) )
 
Theorembrdomi 6851* Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  ~<_  B  ->  E. f  f : A -1-1-> B )
 
Theorembrdom 6852* Dominance relation. (Contributed by NM, 15-Jun-1998.)
 |-  B  e.  _V   =>    |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
 
Theoremdomen 6853* Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
 |-  B  e.  _V   =>    |-  ( A  ~<_  B  <->  E. x ( A 
 ~~  x  /\  x  C_  B ) )
 
Theoremdomeng 6854* Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
 |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x ( A 
 ~~  x  /\  x  C_  B ) ) )
 
Theoremctex 6855 A class dominated by  om is a set. See also ctfoex 7235 which says that a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.)
 |-  ( A  ~<_  om  ->  A  e.  _V )
 
Theoremf1oen4g 6856 The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 6861 does not require the Axiom of Collection nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
 |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X )  /\  F : A
 -1-1-onto-> B )  ->  A  ~~  B )
 
Theoremf1dom4g 6857 The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 6862 does not require the Axiom of Collection nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
 |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X )  /\  F : A -1-1-> B )  ->  A  ~<_  B )
 
Theoremf1oen3g 6858 The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6861 does not require the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.)
 |-  ( ( F  e.  V  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
 
Theoremf1oen2g 6859 The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6861 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
 
Theoremf1dom2g 6860 The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 6862 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A -1-1-> B )  ->  A  ~<_  B )
 
Theoremf1oeng 6861 The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
 |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
 
Theoremf1domg 6862 The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
 |-  ( B  e.  C  ->  ( F : A -1-1-> B 
 ->  A  ~<_  B ) )
 
Theoremf1oen 6863 The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
 |-  A  e.  _V   =>    |-  ( F : A
 -1-1-onto-> B  ->  A  ~~  B )
 
Theoremf1dom 6864 The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.)
 |-  B  e.  _V   =>    |-  ( F : A -1-1-> B  ->  A  ~<_  B )
 
Theoremisfi 6865* Express " A is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
 |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x )
 
Theoremenssdom 6866 Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
 |- 
 ~~  C_  ~<_
 
Theoremendom 6867 Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.)
 |-  ( A  ~~  B  ->  A  ~<_  B )
 
Theoremenrefg 6868 Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  V  ->  A  ~~  A )
 
Theoremenref 6869 Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
 |-  A  e.  _V   =>    |-  A  ~~  A
 
Theoremeqeng 6870 Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.)
 |-  ( A  e.  V  ->  ( A  =  B  ->  A  ~~  B ) )
 
Theoremdomrefg 6871 Dominance is reflexive. (Contributed by NM, 18-Jun-1998.)
 |-  ( A  e.  V  ->  A  ~<_  A )
 
Theoremen2d 6872* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  ( x  e.  A  ->  C  e.  _V ) )   &    |-  ( ph  ->  ( y  e.  B  ->  D  e.  _V ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
 ) )   =>    |-  ( ph  ->  A  ~~  B )
 
Theoremen3d 6873* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )   &    |-  ( ph  ->  ( y  e.  B  ->  D  e.  A ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  =  D  <->  y  =  C ) ) )   =>    |-  ( ph  ->  A 
 ~~  B )
 
Theoremen2i 6874* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  e.  A  ->  C  e.  _V )   &    |-  ( y  e.  B  ->  D  e.  _V )   &    |-  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) )   =>    |-  A  ~~  B
 
Theoremen3i 6875* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  e.  A  ->  C  e.  B )   &    |-  ( y  e.  B  ->  D  e.  A )   &    |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  =  D  <->  y  =  C ) )   =>    |-  A  ~~  B
 
Theoremdom2lem 6876* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
 |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )   =>    |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-> B )
 
Theoremdom2d 6877* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.)
 |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )   =>    |-  ( ph  ->  ( B  e.  R  ->  A  ~<_  B ) )
 
Theoremdom3d 6878* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
 |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  A  ~<_  B )
 
Theoremdom2 6879* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain.  C and  D can be read  C ( x ) and  D ( y ), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
 |-  ( x  e.  A  ->  C  e.  B )   &    |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y
 ) )   =>    |-  ( B  e.  V  ->  A  ~<_  B )
 
Theoremdom3 6880* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain.  C and  D can be read  C ( x ) and  D ( y ), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.)
 |-  ( x  e.  A  ->  C  e.  B )   &    |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y
 ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  ~<_  B )
 
Theoremidssen 6881 Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |- 
 _I  C_  ~~
 
Theoremdomssr 6882 If  C is a superset of  B and  B dominates  A, then  C also dominates  A. (Contributed by BTernaryTau, 7-Dec-2024.)
 |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A 
 ~<_  C )
 
Theoremssdomg 6883 A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |-  ( B  e.  V  ->  ( A  C_  B  ->  A  ~<_  B ) )
 
Theoremener 6884 Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |- 
 ~~  Er  _V
 
Theoremensymb 6885 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  ~~  B  <->  B 
 ~~  A )
 
Theoremensym 6886 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  ~~  B  ->  B  ~~  A )
 
Theoremensymi 6887 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   =>    |-  B  ~~  A
 
Theoremensymd 6888 Symmetry of equinumerosity. Deduction form of ensym 6886. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  ~~  B )   =>    |-  ( ph  ->  B  ~~  A )
 
Theorementr 6889 Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.)
 |-  ( ( A  ~~  B  /\  B  ~~  C )  ->  A  ~~  C )
 
Theoremdomtr 6890 Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  ~<_  B  /\  B 
 ~<_  C )  ->  A  ~<_  C )
 
Theorementri 6891 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   &    |-  B  ~~  C   =>    |-  A  ~~  C
 
Theorementr2i 6892 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   &    |-  B  ~~  C   =>    |-  C  ~~  A
 
Theorementr3i 6893 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   &    |-  A  ~~  C   =>    |-  B  ~~  C
 
Theorementr4i 6894 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
 |-  A  ~~  B   &    |-  C  ~~  B   =>    |-  A  ~~  C
 
Theoremendomtr 6895 Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
 |-  ( ( A  ~~  B  /\  B  ~<_  C ) 
 ->  A  ~<_  C )
 
Theoremdomentr 6896 Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
 |-  ( ( A  ~<_  B  /\  B  ~~  C )  ->  A 
 ~<_  C )
 
Theoremf1imaeng 6897 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
 |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C )  ~~  C )
 
Theoremf1imaen2g 6898 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6899 does not need ax-setind 4593.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
 |-  ( ( ( F : A -1-1-> B  /\  B  e.  V )  /\  ( C  C_  A  /\  C  e.  V ) )  ->  ( F " C )  ~~  C )
 
Theoremf1imaen 6899 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
 |-  C  e.  _V   =>    |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F " C ) 
 ~~  C )
 
Theoremen0 6900 The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
 |-  ( A  ~~  (/)  <->  A  =  (/) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >