![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssct | GIF version |
Description: A subset of a set dominated by ω is dominated by ω. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ssct | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex 6599 | . . . 4 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
2 | ssdomg 6624 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐵 ≼ ω → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
4 | 3 | impcom 124 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ 𝐵) |
5 | domtr 6631 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) | |
6 | 4, 5 | sylancom 414 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω) → 𝐴 ≼ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1461 Vcvv 2655 ⊆ wss 3035 class class class wbr 3893 ωcom 4462 ≼ cdom 6585 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-dom 6588 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |