| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgisucinc | Unicode version | ||
| Description: Value of the recursive
definition generator at a successor.
This can be thought of as a generalization of oasuc 6600 and omsuc 6608. (Contributed by Jim Kingdon, 29-Aug-2019.) |
| Ref | Expression |
|---|---|
| rdgisuc1.1 |
|
| rdgisuc1.2 |
|
| rdgisuc1.3 |
|
| rdgisucinc.inc |
|
| Ref | Expression |
|---|---|
| rdgisucinc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgisuc1.1 |
. . . 4
| |
| 2 | rdgisuc1.2 |
. . . 4
| |
| 3 | rdgisuc1.3 |
. . . 4
| |
| 4 | 1, 2, 3 | rdgisuc1 6520 |
. . 3
|
| 5 | unass 3361 |
. . 3
| |
| 6 | 4, 5 | eqtr4di 2280 |
. 2
|
| 7 | rdgival 6518 |
. . . 4
| |
| 8 | 1, 2, 3, 7 | syl3anc 1271 |
. . 3
|
| 9 | 8 | uneq1d 3357 |
. 2
|
| 10 | rdgexggg 6513 |
. . . . 5
| |
| 11 | 1, 2, 3, 10 | syl3anc 1271 |
. . . 4
|
| 12 | rdgisucinc.inc |
. . . 4
| |
| 13 | id 19 |
. . . . . 6
| |
| 14 | fveq2 5623 |
. . . . . 6
| |
| 15 | 13, 14 | sseq12d 3255 |
. . . . 5
|
| 16 | 15 | spcgv 2890 |
. . . 4
|
| 17 | 11, 12, 16 | sylc 62 |
. . 3
|
| 18 | ssequn1 3374 |
. . 3
| |
| 19 | 17, 18 | sylib 122 |
. 2
|
| 20 | 6, 9, 19 | 3eqtr2d 2268 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-recs 6441 df-irdg 6506 |
| This theorem is referenced by: frecrdg 6544 |
| Copyright terms: Public domain | W3C validator |