ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisucinc Unicode version

Theorem rdgisucinc 6364
Description: Value of the recursive definition generator at a successor.

This can be thought of as a generalization of oasuc 6443 and omsuc 6451. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
rdgisuc1.1  |-  ( ph  ->  F  Fn  _V )
rdgisuc1.2  |-  ( ph  ->  A  e.  V )
rdgisuc1.3  |-  ( ph  ->  B  e.  On )
rdgisucinc.inc  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
Assertion
Ref Expression
rdgisucinc  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Distinct variable groups:    x, F    x, A    x, B    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem rdgisucinc
StepHypRef Expression
1 rdgisuc1.1 . . . 4  |-  ( ph  ->  F  Fn  _V )
2 rdgisuc1.2 . . . 4  |-  ( ph  ->  A  e.  V )
3 rdgisuc1.3 . . . 4  |-  ( ph  ->  B  e.  On )
41, 2, 3rdgisuc1 6363 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
5 unass 3284 . . 3  |-  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) )
64, 5eqtr4di 2221 . 2  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) ) )  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) )
7 rdgival 6361 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
81, 2, 3, 7syl3anc 1233 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
98uneq1d 3280 . 2  |-  ( ph  ->  ( ( rec ( F ,  A ) `  B )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) )  =  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) )
10 rdgexggg 6356 . . . . 5  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  e.  _V )
111, 2, 3, 10syl3anc 1233 . . . 4  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  e.  _V )
12 rdgisucinc.inc . . . 4  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
13 id 19 . . . . . 6  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  x  =  ( rec ( F ,  A ) `  B ) )
14 fveq2 5496 . . . . . 6  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  ( F `  x )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1513, 14sseq12d 3178 . . . . 5  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  (
x  C_  ( F `  x )  <->  ( rec ( F ,  A ) `
 B )  C_  ( F `  ( rec ( F ,  A
) `  B )
) ) )
1615spcgv 2817 . . . 4  |-  ( ( rec ( F ,  A ) `  B
)  e.  _V  ->  ( A. x  x  C_  ( F `  x )  ->  ( rec ( F ,  A ) `  B )  C_  ( F `  ( rec ( F ,  A ) `
 B ) ) ) )
1711, 12, 16sylc 62 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  C_  ( F `  ( rec ( F ,  A ) `
 B ) ) )
18 ssequn1 3297 . . 3  |-  ( ( rec ( F ,  A ) `  B
)  C_  ( F `  ( rec ( F ,  A ) `  B ) )  <->  ( ( rec ( F ,  A
) `  B )  u.  ( F `  ( rec ( F ,  A
) `  B )
) )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
1917, 18sylib 121 . 2  |-  ( ph  ->  ( ( rec ( F ,  A ) `  B )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) )  =  ( F `
 ( rec ( F ,  A ) `  B ) ) )
206, 9, 193eqtr2d 2209 1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346    = wceq 1348    e. wcel 2141   _Vcvv 2730    u. cun 3119    C_ wss 3121   U_ciun 3873   Oncon0 4348   suc csuc 4350    Fn wfn 5193   ` cfv 5198   reccrdg 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-recs 6284  df-irdg 6349
This theorem is referenced by:  frecrdg  6387
  Copyright terms: Public domain W3C validator