ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisucinc Unicode version

Theorem rdgisucinc 6353
Description: Value of the recursive definition generator at a successor.

This can be thought of as a generalization of oasuc 6432 and omsuc 6440. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
rdgisuc1.1  |-  ( ph  ->  F  Fn  _V )
rdgisuc1.2  |-  ( ph  ->  A  e.  V )
rdgisuc1.3  |-  ( ph  ->  B  e.  On )
rdgisucinc.inc  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
Assertion
Ref Expression
rdgisucinc  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Distinct variable groups:    x, F    x, A    x, B    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem rdgisucinc
StepHypRef Expression
1 rdgisuc1.1 . . . 4  |-  ( ph  ->  F  Fn  _V )
2 rdgisuc1.2 . . . 4  |-  ( ph  ->  A  e.  V )
3 rdgisuc1.3 . . . 4  |-  ( ph  ->  B  e.  On )
41, 2, 3rdgisuc1 6352 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
5 unass 3279 . . 3  |-  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) )
64, 5eqtr4di 2217 . 2  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) ) )  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) )
7 rdgival 6350 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
81, 2, 3, 7syl3anc 1228 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
98uneq1d 3275 . 2  |-  ( ph  ->  ( ( rec ( F ,  A ) `  B )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) )  =  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) )
10 rdgexggg 6345 . . . . 5  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  e.  _V )
111, 2, 3, 10syl3anc 1228 . . . 4  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  e.  _V )
12 rdgisucinc.inc . . . 4  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
13 id 19 . . . . . 6  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  x  =  ( rec ( F ,  A ) `  B ) )
14 fveq2 5486 . . . . . 6  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  ( F `  x )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1513, 14sseq12d 3173 . . . . 5  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  (
x  C_  ( F `  x )  <->  ( rec ( F ,  A ) `
 B )  C_  ( F `  ( rec ( F ,  A
) `  B )
) ) )
1615spcgv 2813 . . . 4  |-  ( ( rec ( F ,  A ) `  B
)  e.  _V  ->  ( A. x  x  C_  ( F `  x )  ->  ( rec ( F ,  A ) `  B )  C_  ( F `  ( rec ( F ,  A ) `
 B ) ) ) )
1711, 12, 16sylc 62 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  C_  ( F `  ( rec ( F ,  A ) `
 B ) ) )
18 ssequn1 3292 . . 3  |-  ( ( rec ( F ,  A ) `  B
)  C_  ( F `  ( rec ( F ,  A ) `  B ) )  <->  ( ( rec ( F ,  A
) `  B )  u.  ( F `  ( rec ( F ,  A
) `  B )
) )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
1917, 18sylib 121 . 2  |-  ( ph  ->  ( ( rec ( F ,  A ) `  B )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) )  =  ( F `
 ( rec ( F ,  A ) `  B ) ) )
206, 9, 193eqtr2d 2204 1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114    C_ wss 3116   U_ciun 3866   Oncon0 4341   suc csuc 4343    Fn wfn 5183   ` cfv 5188   reccrdg 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273  df-irdg 6338
This theorem is referenced by:  frecrdg  6376
  Copyright terms: Public domain W3C validator