ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisucinc Unicode version

Theorem rdgisucinc 6386
Description: Value of the recursive definition generator at a successor.

This can be thought of as a generalization of oasuc 6465 and omsuc 6473. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
rdgisuc1.1  |-  ( ph  ->  F  Fn  _V )
rdgisuc1.2  |-  ( ph  ->  A  e.  V )
rdgisuc1.3  |-  ( ph  ->  B  e.  On )
rdgisucinc.inc  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
Assertion
Ref Expression
rdgisucinc  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Distinct variable groups:    x, F    x, A    x, B    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem rdgisucinc
StepHypRef Expression
1 rdgisuc1.1 . . . 4  |-  ( ph  ->  F  Fn  _V )
2 rdgisuc1.2 . . . 4  |-  ( ph  ->  A  e.  V )
3 rdgisuc1.3 . . . 4  |-  ( ph  ->  B  e.  On )
41, 2, 3rdgisuc1 6385 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
5 unass 3293 . . 3  |-  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) )
64, 5eqtr4di 2228 . 2  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) ) )  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) )
7 rdgival 6383 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
81, 2, 3, 7syl3anc 1238 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
98uneq1d 3289 . 2  |-  ( ph  ->  ( ( rec ( F ,  A ) `  B )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) )  =  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) )
10 rdgexggg 6378 . . . . 5  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  e.  _V )
111, 2, 3, 10syl3anc 1238 . . . 4  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  e.  _V )
12 rdgisucinc.inc . . . 4  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
13 id 19 . . . . . 6  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  x  =  ( rec ( F ,  A ) `  B ) )
14 fveq2 5516 . . . . . 6  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  ( F `  x )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1513, 14sseq12d 3187 . . . . 5  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  (
x  C_  ( F `  x )  <->  ( rec ( F ,  A ) `
 B )  C_  ( F `  ( rec ( F ,  A
) `  B )
) ) )
1615spcgv 2825 . . . 4  |-  ( ( rec ( F ,  A ) `  B
)  e.  _V  ->  ( A. x  x  C_  ( F `  x )  ->  ( rec ( F ,  A ) `  B )  C_  ( F `  ( rec ( F ,  A ) `
 B ) ) ) )
1711, 12, 16sylc 62 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  C_  ( F `  ( rec ( F ,  A ) `
 B ) ) )
18 ssequn1 3306 . . 3  |-  ( ( rec ( F ,  A ) `  B
)  C_  ( F `  ( rec ( F ,  A ) `  B ) )  <->  ( ( rec ( F ,  A
) `  B )  u.  ( F `  ( rec ( F ,  A
) `  B )
) )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
1917, 18sylib 122 . 2  |-  ( ph  ->  ( ( rec ( F ,  A ) `  B )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) )  =  ( F `
 ( rec ( F ,  A ) `  B ) ) )
206, 9, 193eqtr2d 2216 1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    = wceq 1353    e. wcel 2148   _Vcvv 2738    u. cun 3128    C_ wss 3130   U_ciun 3887   Oncon0 4364   suc csuc 4366    Fn wfn 5212   ` cfv 5217   reccrdg 6370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-recs 6306  df-irdg 6371
This theorem is referenced by:  frecrdg  6409
  Copyright terms: Public domain W3C validator