| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgisucinc | Unicode version | ||
| Description: Value of the recursive
definition generator at a successor.
This can be thought of as a generalization of oasuc 6562 and omsuc 6570. (Contributed by Jim Kingdon, 29-Aug-2019.) |
| Ref | Expression |
|---|---|
| rdgisuc1.1 |
|
| rdgisuc1.2 |
|
| rdgisuc1.3 |
|
| rdgisucinc.inc |
|
| Ref | Expression |
|---|---|
| rdgisucinc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgisuc1.1 |
. . . 4
| |
| 2 | rdgisuc1.2 |
. . . 4
| |
| 3 | rdgisuc1.3 |
. . . 4
| |
| 4 | 1, 2, 3 | rdgisuc1 6482 |
. . 3
|
| 5 | unass 3334 |
. . 3
| |
| 6 | 4, 5 | eqtr4di 2257 |
. 2
|
| 7 | rdgival 6480 |
. . . 4
| |
| 8 | 1, 2, 3, 7 | syl3anc 1250 |
. . 3
|
| 9 | 8 | uneq1d 3330 |
. 2
|
| 10 | rdgexggg 6475 |
. . . . 5
| |
| 11 | 1, 2, 3, 10 | syl3anc 1250 |
. . . 4
|
| 12 | rdgisucinc.inc |
. . . 4
| |
| 13 | id 19 |
. . . . . 6
| |
| 14 | fveq2 5588 |
. . . . . 6
| |
| 15 | 13, 14 | sseq12d 3228 |
. . . . 5
|
| 16 | 15 | spcgv 2864 |
. . . 4
|
| 17 | 11, 12, 16 | sylc 62 |
. . 3
|
| 18 | ssequn1 3347 |
. . 3
| |
| 19 | 17, 18 | sylib 122 |
. 2
|
| 20 | 6, 9, 19 | 3eqtr2d 2245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-suc 4425 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-recs 6403 df-irdg 6468 |
| This theorem is referenced by: frecrdg 6506 |
| Copyright terms: Public domain | W3C validator |