ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisucinc Unicode version

Theorem rdgisucinc 6212
Description: Value of the recursive definition generator at a successor.

This can be thought of as a generalization of oasuc 6290 and omsuc 6298. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
rdgisuc1.1  |-  ( ph  ->  F  Fn  _V )
rdgisuc1.2  |-  ( ph  ->  A  e.  V )
rdgisuc1.3  |-  ( ph  ->  B  e.  On )
rdgisucinc.inc  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
Assertion
Ref Expression
rdgisucinc  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Distinct variable groups:    x, F    x, A    x, B    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem rdgisucinc
StepHypRef Expression
1 rdgisuc1.1 . . . 4  |-  ( ph  ->  F  Fn  _V )
2 rdgisuc1.2 . . . 4  |-  ( ph  ->  A  e.  V )
3 rdgisuc1.3 . . . 4  |-  ( ph  ->  B  e.  On )
41, 2, 3rdgisuc1 6211 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) ) )
5 unass 3180 . . 3  |-  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A
) `  x )
)  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) )
64, 5syl6eqr 2150 . 2  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `
 x ) ) )  u.  ( F `
 ( rec ( F ,  A ) `  B ) ) ) )
7 rdgival 6209 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
81, 2, 3, 7syl3anc 1184 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
98uneq1d 3176 . 2  |-  ( ph  ->  ( ( rec ( F ,  A ) `  B )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) )  =  ( ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) )  u.  ( F `  ( rec ( F ,  A ) `  B
) ) ) )
10 rdgexggg 6204 . . . . 5  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  e.  _V )
111, 2, 3, 10syl3anc 1184 . . . 4  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  e.  _V )
12 rdgisucinc.inc . . . 4  |-  ( ph  ->  A. x  x  C_  ( F `  x ) )
13 id 19 . . . . . 6  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  x  =  ( rec ( F ,  A ) `  B ) )
14 fveq2 5353 . . . . . 6  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  ( F `  x )  =  ( F `  ( rec ( F ,  A ) `  B
) ) )
1513, 14sseq12d 3078 . . . . 5  |-  ( x  =  ( rec ( F ,  A ) `  B )  ->  (
x  C_  ( F `  x )  <->  ( rec ( F ,  A ) `
 B )  C_  ( F `  ( rec ( F ,  A
) `  B )
) ) )
1615spcgv 2728 . . . 4  |-  ( ( rec ( F ,  A ) `  B
)  e.  _V  ->  ( A. x  x  C_  ( F `  x )  ->  ( rec ( F ,  A ) `  B )  C_  ( F `  ( rec ( F ,  A ) `
 B ) ) ) )
1711, 12, 16sylc 62 . . 3  |-  ( ph  ->  ( rec ( F ,  A ) `  B )  C_  ( F `  ( rec ( F ,  A ) `
 B ) ) )
18 ssequn1 3193 . . 3  |-  ( ( rec ( F ,  A ) `  B
)  C_  ( F `  ( rec ( F ,  A ) `  B ) )  <->  ( ( rec ( F ,  A
) `  B )  u.  ( F `  ( rec ( F ,  A
) `  B )
) )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
1917, 18sylib 121 . 2  |-  ( ph  ->  ( ( rec ( F ,  A ) `  B )  u.  ( F `  ( rec ( F ,  A ) `
 B ) ) )  =  ( F `
 ( rec ( F ,  A ) `  B ) ) )
206, 9, 193eqtr2d 2138 1  |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `  ( rec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1297    = wceq 1299    e. wcel 1448   _Vcvv 2641    u. cun 3019    C_ wss 3021   U_ciun 3760   Oncon0 4223   suc csuc 4225    Fn wfn 5054   ` cfv 5059   reccrdg 6196
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-recs 6132  df-irdg 6197
This theorem is referenced by:  frecrdg  6235
  Copyright terms: Public domain W3C validator