ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brxp Unicode version

Theorem brxp 4466
Description: Binary relation on a cross product. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
brxp  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )

Proof of Theorem brxp
StepHypRef Expression
1 df-br 3844 . 2  |-  ( A ( C  X.  D
) B  <->  <. A ,  B >.  e.  ( C  X.  D ) )
2 opelxp 4465 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
31, 2bitri 182 1  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    e. wcel 1438   <.cop 3447   class class class wbr 3843    X. cxp 4434
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-br 3844  df-opab 3898  df-xp 4442
This theorem is referenced by:  brrelex12  4472  brel  4486  brinxp2  4501  eqbrrdva  4602  xpidtr  4817  xpcom  4972  tpostpos  6021  swoer  6310  erinxp  6356  ecopover  6380  ecopoverg  6383  ltxrlt  7542  ltxr  9236
  Copyright terms: Public domain W3C validator