Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brxp | Unicode version |
Description: Binary relation on a cross product. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
brxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3962 | . 2 | |
2 | opelxp 4609 | . 2 | |
3 | 1, 2 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wcel 2125 cop 3559 class class class wbr 3961 cxp 4577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-xp 4585 |
This theorem is referenced by: brrelex12 4617 brel 4631 brinxp2 4646 eqbrrdva 4749 xpidtr 4969 xpcom 5125 tpostpos 6201 swoer 6497 erinxp 6543 ecopover 6567 ecopoverg 6570 ltxrlt 7922 ltxr 9660 |
Copyright terms: Public domain | W3C validator |