ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brxp Unicode version

Theorem brxp 4724
Description: Binary relation on a cross product. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
brxp  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )

Proof of Theorem brxp
StepHypRef Expression
1 df-br 4060 . 2  |-  ( A ( C  X.  D
) B  <->  <. A ,  B >.  e.  ( C  X.  D ) )
2 opelxp 4723 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
31, 2bitri 184 1  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2178   <.cop 3646   class class class wbr 4059    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699
This theorem is referenced by:  brrelex12  4731  brel  4745  brinxp2  4760  eqbrrdva  4866  ssrelrn  4888  xpidtr  5092  xpcom  5248  tpostpos  6373  swoer  6671  erinxp  6719  ecopover  6743  ecopoverg  6746  ltxrlt  8173  ltxr  9932  znleval  14530
  Copyright terms: Public domain W3C validator