ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brxp Unicode version

Theorem brxp 4749
Description: Binary relation on a cross product. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
brxp  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )

Proof of Theorem brxp
StepHypRef Expression
1 df-br 4083 . 2  |-  ( A ( C  X.  D
) B  <->  <. A ,  B >.  e.  ( C  X.  D ) )
2 opelxp 4748 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
31, 2bitri 184 1  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   <.cop 3669   class class class wbr 4082    X. cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724
This theorem is referenced by:  brrelex12  4756  brel  4770  brinxp2  4785  eqbrrdva  4891  ssrelrn  4913  xpidtr  5118  xpcom  5274  tpostpos  6408  swoer  6706  erinxp  6754  ecopover  6778  ecopoverg  6781  ltxrlt  8208  ltxr  9967  znleval  14611
  Copyright terms: Public domain W3C validator