ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structfun Unicode version

Theorem structfun 12007
Description: Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof shortened by AV, 12-Nov-2021.)
Hypothesis
Ref Expression
structfun.1  |-  F Struct  X
Assertion
Ref Expression
structfun  |-  Fun  `' `' F

Proof of Theorem structfun
StepHypRef Expression
1 structfun.1 . 2  |-  F Struct  X
2 structfung 12006 . 2  |-  ( F Struct  X  ->  Fun  `' `' F )
31, 2ax-mp 5 1  |-  Fun  `' `' F
Colors of variables: wff set class
Syntax hints:   class class class wbr 3933   `'ccnv 4542   Fun wfun 5121   Struct cstr 11985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2689  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-br 3934  df-opab 3994  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-iota 5092  df-fun 5129  df-fv 5135  df-struct 11991
This theorem is referenced by:  structfn  12008  strslfv  12033
  Copyright terms: Public domain W3C validator