ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structfun Unicode version

Theorem structfun 12623
Description: Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof shortened by AV, 12-Nov-2021.)
Hypothesis
Ref Expression
structfun.1  |-  F Struct  X
Assertion
Ref Expression
structfun  |-  Fun  `' `' F

Proof of Theorem structfun
StepHypRef Expression
1 structfun.1 . 2  |-  F Struct  X
2 structfung 12622 . 2  |-  ( F Struct  X  ->  Fun  `' `' F )
31, 2ax-mp 5 1  |-  Fun  `' `' F
Colors of variables: wff set class
Syntax hints:   class class class wbr 4029   `'ccnv 4654   Fun wfun 5240   Struct cstr 12601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-iota 5207  df-fun 5248  df-fv 5254  df-struct 12607
This theorem is referenced by:  structfn  12624  strslfv  12650
  Copyright terms: Public domain W3C validator