ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv Unicode version

Theorem strslfv 12877
Description: Extract a structure component  C (such as the base set) from a structure  S with a component extractor  E (such as the base set extractor df-base 12838). By virtue of ndxslid 12857, this can be done without having to refer to the hard-coded numeric index of  E. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv.s  |-  S Struct  X
strslfv.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv.n  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
Assertion
Ref Expression
strslfv  |-  ( C  e.  V  ->  C  =  ( E `  S ) )

Proof of Theorem strslfv
StepHypRef Expression
1 strslfv.e . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strfv.s . . 3  |-  S Struct  X
3 structex 12844 . . 3  |-  ( S Struct  X  ->  S  e.  _V )
42, 3mp1i 10 . 2  |-  ( C  e.  V  ->  S  e.  _V )
52structfun 12850 . . 3  |-  Fun  `' `' S
65a1i 9 . 2  |-  ( C  e.  V  ->  Fun  `' `' S )
7 strfv.n . . 3  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
81simpri 113 . . . . 5  |-  ( E `
 ndx )  e.  NN
9 opexg 4272 . . . . 5  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
108, 9mpan 424 . . . 4  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
11 snssg 3767 . . . 4  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  {
<. ( E `  ndx ) ,  C >. } 
C_  S ) )
1210, 11syl 14 . . 3  |-  ( C  e.  V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  { <. ( E `  ndx ) ,  C >. } 
C_  S ) )
137, 12mpbiri 168 . 2  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  S
)
14 id 19 . 2  |-  ( C  e.  V  ->  C  e.  V )
151, 4, 6, 13, 14strslfv2d 12875 1  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   {csn 3633   <.cop 3636   class class class wbr 4044   `'ccnv 4674   Fun wfun 5265   ` cfv 5271   NNcn 9036   Struct cstr 12828   ndxcnx 12829  Slot cslot 12831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-struct 12834  df-slot 12836
This theorem is referenced by:  cnfldbas  14322  mpocnfldadd  14323  mpocnfldmul  14325  cnfldcj  14327  cnfldtset  14328  cnfldle  14329  cnfldds  14330
  Copyright terms: Public domain W3C validator