ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv Unicode version

Theorem strslfv 12848
Description: Extract a structure component  C (such as the base set) from a structure  S with a component extractor  E (such as the base set extractor df-base 12809). By virtue of ndxslid 12828, this can be done without having to refer to the hard-coded numeric index of  E. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv.s  |-  S Struct  X
strslfv.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv.n  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
Assertion
Ref Expression
strslfv  |-  ( C  e.  V  ->  C  =  ( E `  S ) )

Proof of Theorem strslfv
StepHypRef Expression
1 strslfv.e . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strfv.s . . 3  |-  S Struct  X
3 structex 12815 . . 3  |-  ( S Struct  X  ->  S  e.  _V )
42, 3mp1i 10 . 2  |-  ( C  e.  V  ->  S  e.  _V )
52structfun 12821 . . 3  |-  Fun  `' `' S
65a1i 9 . 2  |-  ( C  e.  V  ->  Fun  `' `' S )
7 strfv.n . . 3  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
81simpri 113 . . . . 5  |-  ( E `
 ndx )  e.  NN
9 opexg 4271 . . . . 5  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
108, 9mpan 424 . . . 4  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
11 snssg 3766 . . . 4  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  {
<. ( E `  ndx ) ,  C >. } 
C_  S ) )
1210, 11syl 14 . . 3  |-  ( C  e.  V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  { <. ( E `  ndx ) ,  C >. } 
C_  S ) )
137, 12mpbiri 168 . 2  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  S
)
14 id 19 . 2  |-  ( C  e.  V  ->  C  e.  V )
151, 4, 6, 13, 14strslfv2d 12846 1  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   _Vcvv 2771    C_ wss 3165   {csn 3632   <.cop 3635   class class class wbr 4043   `'ccnv 4673   Fun wfun 5264   ` cfv 5270   NNcn 9035   Struct cstr 12799   ndxcnx 12800  Slot cslot 12802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278  df-struct 12805  df-slot 12807
This theorem is referenced by:  cnfldbas  14293  mpocnfldadd  14294  mpocnfldmul  14296  cnfldcj  14298  cnfldtset  14299  cnfldle  14300  cnfldds  14301
  Copyright terms: Public domain W3C validator