ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv Unicode version

Theorem strslfv 12723
Description: Extract a structure component  C (such as the base set) from a structure  S with a component extractor  E (such as the base set extractor df-base 12684). By virtue of ndxslid 12703, this can be done without having to refer to the hard-coded numeric index of  E. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv.s  |-  S Struct  X
strslfv.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv.n  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
Assertion
Ref Expression
strslfv  |-  ( C  e.  V  ->  C  =  ( E `  S ) )

Proof of Theorem strslfv
StepHypRef Expression
1 strslfv.e . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strfv.s . . 3  |-  S Struct  X
3 structex 12690 . . 3  |-  ( S Struct  X  ->  S  e.  _V )
42, 3mp1i 10 . 2  |-  ( C  e.  V  ->  S  e.  _V )
52structfun 12696 . . 3  |-  Fun  `' `' S
65a1i 9 . 2  |-  ( C  e.  V  ->  Fun  `' `' S )
7 strfv.n . . 3  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
81simpri 113 . . . . 5  |-  ( E `
 ndx )  e.  NN
9 opexg 4261 . . . . 5  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
108, 9mpan 424 . . . 4  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
11 snssg 3756 . . . 4  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  {
<. ( E `  ndx ) ,  C >. } 
C_  S ) )
1210, 11syl 14 . . 3  |-  ( C  e.  V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  { <. ( E `  ndx ) ,  C >. } 
C_  S ) )
137, 12mpbiri 168 . 2  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  S
)
14 id 19 . 2  |-  ( C  e.  V  ->  C  e.  V )
151, 4, 6, 13, 14strslfv2d 12721 1  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   {csn 3622   <.cop 3625   class class class wbr 4033   `'ccnv 4662   Fun wfun 5252   ` cfv 5258   NNcn 8990   Struct cstr 12674   ndxcnx 12675  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-struct 12680  df-slot 12682
This theorem is referenced by:  strslfv3  12724  cnfldbas  14116  mpocnfldadd  14117  mpocnfldmul  14119  cnfldcj  14121  cnfldtset  14122  cnfldle  14123  cnfldds  14124
  Copyright terms: Public domain W3C validator