ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv Unicode version

Theorem strslfv 12666
Description: Extract a structure component  C (such as the base set) from a structure  S with a component extractor  E (such as the base set extractor df-base 12627). By virtue of ndxslid 12646, this can be done without having to refer to the hard-coded numeric index of  E. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv.s  |-  S Struct  X
strslfv.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv.n  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
Assertion
Ref Expression
strslfv  |-  ( C  e.  V  ->  C  =  ( E `  S ) )

Proof of Theorem strslfv
StepHypRef Expression
1 strslfv.e . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strfv.s . . 3  |-  S Struct  X
3 structex 12633 . . 3  |-  ( S Struct  X  ->  S  e.  _V )
42, 3mp1i 10 . 2  |-  ( C  e.  V  ->  S  e.  _V )
52structfun 12639 . . 3  |-  Fun  `' `' S
65a1i 9 . 2  |-  ( C  e.  V  ->  Fun  `' `' S )
7 strfv.n . . 3  |-  { <. ( E `  ndx ) ,  C >. }  C_  S
81simpri 113 . . . . 5  |-  ( E `
 ndx )  e.  NN
9 opexg 4258 . . . . 5  |-  ( ( ( E `  ndx )  e.  NN  /\  C  e.  V )  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
108, 9mpan 424 . . . 4  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  _V )
11 snssg 3753 . . . 4  |-  ( <.
( E `  ndx ) ,  C >.  e. 
_V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  {
<. ( E `  ndx ) ,  C >. } 
C_  S ) )
1210, 11syl 14 . . 3  |-  ( C  e.  V  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  <->  { <. ( E `  ndx ) ,  C >. } 
C_  S ) )
137, 12mpbiri 168 . 2  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  S
)
14 id 19 . 2  |-  ( C  e.  V  ->  C  e.  V )
151, 4, 6, 13, 14strslfv2d 12664 1  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3154   {csn 3619   <.cop 3622   class class class wbr 4030   `'ccnv 4659   Fun wfun 5249   ` cfv 5255   NNcn 8984   Struct cstr 12617   ndxcnx 12618  Slot cslot 12620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-struct 12623  df-slot 12625
This theorem is referenced by:  strslfv3  12667  cnfldbas  14059  mpocnfldadd  14060  mpocnfldmul  14062  cnfldcj  14064  cnfldtset  14065  cnfldle  14066  cnfldds  14067
  Copyright terms: Public domain W3C validator