ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structfung Unicode version

Theorem structfung 12481
Description: The converse of the converse of a structure is a function. Closed form of structfun 12482. (Contributed by AV, 12-Nov-2021.)
Assertion
Ref Expression
structfung  |-  ( F Struct  X  ->  Fun  `' `' F )

Proof of Theorem structfung
StepHypRef Expression
1 structn0fun 12477 . 2  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )
2 structcnvcnv 12480 . . 3  |-  ( F Struct  X  ->  `' `' F  =  ( F  \  { (/) } ) )
32funeqd 5240 . 2  |-  ( F Struct  X  ->  ( Fun  `' `' F  <->  Fun  ( F  \  { (/) } ) ) )
41, 3mpbird 167 1  |-  ( F Struct  X  ->  Fun  `' `' F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3128   (/)c0 3424   {csn 3594   class class class wbr 4005   `'ccnv 4627   Fun wfun 5212   Struct cstr 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-struct 12466
This theorem is referenced by:  structfun  12482  opelstrsl  12575
  Copyright terms: Public domain W3C validator