ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgaddcom Unicode version

Theorem mulgaddcom 13683
Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b  |-  B  =  ( Base `  G
)
mulgaddcom.t  |-  .x.  =  (.g
`  G )
mulgaddcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgaddcom  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  (
( N  .x.  X
)  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgaddcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6008 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
21oveq1d 6016 . . . . . 6  |-  ( x  =  0  ->  (
( x  .x.  X
)  .+  X )  =  ( ( 0 
.x.  X )  .+  X ) )
31oveq2d 6017 . . . . . 6  |-  ( x  =  0  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  (
0  .x.  X )
) )
42, 3eqeq12d 2244 . . . . 5  |-  ( x  =  0  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( (
0  .x.  X )  .+  X )  =  ( X  .+  ( 0 
.x.  X ) ) ) )
5 oveq1 6008 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
65oveq1d 6016 . . . . . 6  |-  ( x  =  y  ->  (
( x  .x.  X
)  .+  X )  =  ( ( y 
.x.  X )  .+  X ) )
75oveq2d 6017 . . . . . 6  |-  ( x  =  y  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  (
y  .x.  X )
) )
86, 7eqeq12d 2244 . . . . 5  |-  ( x  =  y  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( (
y  .x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) ) ) )
9 oveq1 6008 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
109oveq1d 6016 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  X
)  .+  X )  =  ( ( ( y  +  1 ) 
.x.  X )  .+  X ) )
119oveq2d 6017 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  (
( y  +  1 )  .x.  X ) ) )
1210, 11eqeq12d 2244 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( (
( y  +  1 )  .x.  X ) 
.+  X )  =  ( X  .+  (
( y  +  1 )  .x.  X ) ) ) )
13 oveq1 6008 . . . . . . 7  |-  ( x  =  -u y  ->  (
x  .x.  X )  =  ( -u y  .x.  X ) )
1413oveq1d 6016 . . . . . 6  |-  ( x  =  -u y  ->  (
( x  .x.  X
)  .+  X )  =  ( ( -u y  .x.  X )  .+  X ) )
1513oveq2d 6017 . . . . . 6  |-  ( x  =  -u y  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  ( -u y  .x.  X ) ) )
1614, 15eqeq12d 2244 . . . . 5  |-  ( x  =  -u y  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( ( -u y  .x.  X ) 
.+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) )
17 oveq1 6008 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1817oveq1d 6016 . . . . . 6  |-  ( x  =  N  ->  (
( x  .x.  X
)  .+  X )  =  ( ( N 
.x.  X )  .+  X ) )
1917oveq2d 6017 . . . . . 6  |-  ( x  =  N  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  ( N  .x.  X ) ) )
2018, 19eqeq12d 2244 . . . . 5  |-  ( x  =  N  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( ( N  .x.  X )  .+  X )  =  ( X  .+  ( N 
.x.  X ) ) ) )
21 mulgaddcom.b . . . . . . 7  |-  B  =  ( Base `  G
)
22 mulgaddcom.p . . . . . . 7  |-  .+  =  ( +g  `  G )
23 eqid 2229 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
2421, 22, 23grplid 13564 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0g `  G )  .+  X
)  =  X )
25 mulgaddcom.t . . . . . . . . 9  |-  .x.  =  (.g
`  G )
2621, 23, 25mulg0 13662 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2726adantl 277 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
2827oveq1d 6016 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0  .x. 
X )  .+  X
)  =  ( ( 0g `  G ) 
.+  X ) )
2927oveq2d 6017 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  (
0  .x.  X )
)  =  ( X 
.+  ( 0g `  G ) ) )
3021, 22, 23grprid 13565 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
3129, 30eqtrd 2262 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  (
0  .x.  X )
)  =  X )
3224, 28, 313eqtr4d 2272 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0  .x. 
X )  .+  X
)  =  ( X 
.+  ( 0  .x. 
X ) ) )
33 nn0z 9466 . . . . . . . . . 10  |-  ( y  e.  NN0  ->  y  e.  ZZ )
34 simp1 1021 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  G  e.  Grp )
35 simp2 1022 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  X  e.  B )
3621, 25mulgcl 13676 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
37363com23 1233 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  ( y  .x.  X
)  e.  B )
3821, 22grpass 13542 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( y  .x.  X
)  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  ( y  .x.  X ) )  .+  X )  =  ( X  .+  ( ( y  .x.  X ) 
.+  X ) ) )
3934, 35, 37, 35, 38syl13anc 1273 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  ( ( X  .+  ( y  .x.  X
) )  .+  X
)  =  ( X 
.+  ( ( y 
.x.  X )  .+  X ) ) )
4033, 39syl3an3 1306 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( X  .+  ( y  .x.  X
) )  .+  X
)  =  ( X 
.+  ( ( y 
.x.  X )  .+  X ) ) )
4140adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( X 
.+  ( y  .x.  X ) )  .+  X )  =  ( X  .+  ( ( y  .x.  X ) 
.+  X ) ) )
42 grpmnd 13540 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  G  e.  Mnd )
43423ad2ant1 1042 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  ->  G  e.  Mnd )
44 simp3 1023 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
45 simp2 1022 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  ->  X  e.  B )
4621, 25, 22mulgnn0p1 13670 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X )  .+  X ) )
4743, 44, 45, 46syl3anc 1271 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( y  +  1 )  .x.  X
)  =  ( ( y  .x.  X ) 
.+  X ) )
4847eqeq1d 2238 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( ( y  +  1 )  .x.  X )  =  ( X  .+  ( y 
.x.  X ) )  <-> 
( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) ) )
4948biimpar 297 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( y  +  1 )  .x.  X )  =  ( X  .+  ( y 
.x.  X ) ) )
5049oveq1d 6016 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( ( X  .+  (
y  .x.  X )
)  .+  X )
)
5147oveq2d 6017 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( X  .+  (
( y  +  1 )  .x.  X ) )  =  ( X 
.+  ( ( y 
.x.  X )  .+  X ) ) )
5251adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( X  .+  ( ( y  +  1 )  .x.  X
) )  =  ( X  .+  ( ( y  .x.  X ) 
.+  X ) ) )
5341, 50, 523eqtr4d 2272 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( X  .+  ( ( y  +  1 ) 
.x.  X ) ) )
5453ex 115 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( X  .+  ( ( y  +  1 ) 
.x.  X ) ) ) )
55543expia 1229 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN0  ->  ( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( X  .+  ( ( y  +  1 ) 
.x.  X ) ) ) ) )
56 nnz 9465 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
5721, 25, 22mulgaddcomlem 13682 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) )
58573exp1 1247 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
y  e.  ZZ  ->  ( X  e.  B  -> 
( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) ) ) )
5958com23 78 . . . . . . 7  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( y  e.  ZZ  ->  ( ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) )  -> 
( ( -u y  .x.  X )  .+  X
)  =  ( X 
.+  ( -u y  .x.  X ) ) ) ) ) )
6059imp 124 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  ZZ  ->  ( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) ) )
6156, 60syl5 32 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN  ->  ( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) ) )
624, 8, 12, 16, 20, 32, 55, 61zindd 9565 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X )  .+  X
)  =  ( X 
.+  ( N  .x.  X ) ) ) )
6362ex 115 . . 3  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X
)  .+  X )  =  ( X  .+  ( N  .x.  X ) ) ) ) )
6463com23 78 . 2  |-  ( G  e.  Grp  ->  ( N  e.  ZZ  ->  ( X  e.  B  -> 
( ( N  .x.  X )  .+  X
)  =  ( X 
.+  ( N  .x.  X ) ) ) ) )
65643imp 1217 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  (
( N  .x.  X
)  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002   -ucneg 8318   NNcn 9110   NN0cn0 9369   ZZcz 9446   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Mndcmnd 13449   Grpcgrp 13533  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-mulg 13657
This theorem is referenced by:  mulginvcom  13684
  Copyright terms: Public domain W3C validator