ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgaddcom Unicode version

Theorem mulgaddcom 13111
Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b  |-  B  =  ( Base `  G
)
mulgaddcom.t  |-  .x.  =  (.g
`  G )
mulgaddcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgaddcom  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  (
( N  .x.  X
)  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgaddcom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5907 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
21oveq1d 5915 . . . . . 6  |-  ( x  =  0  ->  (
( x  .x.  X
)  .+  X )  =  ( ( 0 
.x.  X )  .+  X ) )
31oveq2d 5916 . . . . . 6  |-  ( x  =  0  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  (
0  .x.  X )
) )
42, 3eqeq12d 2204 . . . . 5  |-  ( x  =  0  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( (
0  .x.  X )  .+  X )  =  ( X  .+  ( 0 
.x.  X ) ) ) )
5 oveq1 5907 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
65oveq1d 5915 . . . . . 6  |-  ( x  =  y  ->  (
( x  .x.  X
)  .+  X )  =  ( ( y 
.x.  X )  .+  X ) )
75oveq2d 5916 . . . . . 6  |-  ( x  =  y  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  (
y  .x.  X )
) )
86, 7eqeq12d 2204 . . . . 5  |-  ( x  =  y  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( (
y  .x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) ) ) )
9 oveq1 5907 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
109oveq1d 5915 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  X
)  .+  X )  =  ( ( ( y  +  1 ) 
.x.  X )  .+  X ) )
119oveq2d 5916 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  (
( y  +  1 )  .x.  X ) ) )
1210, 11eqeq12d 2204 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( (
( y  +  1 )  .x.  X ) 
.+  X )  =  ( X  .+  (
( y  +  1 )  .x.  X ) ) ) )
13 oveq1 5907 . . . . . . 7  |-  ( x  =  -u y  ->  (
x  .x.  X )  =  ( -u y  .x.  X ) )
1413oveq1d 5915 . . . . . 6  |-  ( x  =  -u y  ->  (
( x  .x.  X
)  .+  X )  =  ( ( -u y  .x.  X )  .+  X ) )
1513oveq2d 5916 . . . . . 6  |-  ( x  =  -u y  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  ( -u y  .x.  X ) ) )
1614, 15eqeq12d 2204 . . . . 5  |-  ( x  =  -u y  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( ( -u y  .x.  X ) 
.+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) )
17 oveq1 5907 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1817oveq1d 5915 . . . . . 6  |-  ( x  =  N  ->  (
( x  .x.  X
)  .+  X )  =  ( ( N 
.x.  X )  .+  X ) )
1917oveq2d 5916 . . . . . 6  |-  ( x  =  N  ->  ( X  .+  ( x  .x.  X ) )  =  ( X  .+  ( N  .x.  X ) ) )
2018, 19eqeq12d 2204 . . . . 5  |-  ( x  =  N  ->  (
( ( x  .x.  X )  .+  X
)  =  ( X 
.+  ( x  .x.  X ) )  <->  ( ( N  .x.  X )  .+  X )  =  ( X  .+  ( N 
.x.  X ) ) ) )
21 mulgaddcom.b . . . . . . 7  |-  B  =  ( Base `  G
)
22 mulgaddcom.p . . . . . . 7  |-  .+  =  ( +g  `  G )
23 eqid 2189 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
2421, 22, 23grplid 12998 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0g `  G )  .+  X
)  =  X )
25 mulgaddcom.t . . . . . . . . 9  |-  .x.  =  (.g
`  G )
2621, 23, 25mulg0 13090 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2726adantl 277 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( 0  .x.  X
)  =  ( 0g
`  G ) )
2827oveq1d 5915 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0  .x. 
X )  .+  X
)  =  ( ( 0g `  G ) 
.+  X ) )
2927oveq2d 5916 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  (
0  .x.  X )
)  =  ( X 
.+  ( 0g `  G ) ) )
3021, 22, 23grprid 12999 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
3129, 30eqtrd 2222 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  (
0  .x.  X )
)  =  X )
3224, 28, 313eqtr4d 2232 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( 0  .x. 
X )  .+  X
)  =  ( X 
.+  ( 0  .x. 
X ) ) )
33 nn0z 9308 . . . . . . . . . 10  |-  ( y  e.  NN0  ->  y  e.  ZZ )
34 simp1 999 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  G  e.  Grp )
35 simp2 1000 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  X  e.  B )
3621, 25mulgcl 13104 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
37363com23 1211 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  ( y  .x.  X
)  e.  B )
3821, 22grpass 12977 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( y  .x.  X
)  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  ( y  .x.  X ) )  .+  X )  =  ( X  .+  ( ( y  .x.  X ) 
.+  X ) ) )
3934, 35, 37, 35, 38syl13anc 1251 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  ZZ )  ->  ( ( X  .+  ( y  .x.  X
) )  .+  X
)  =  ( X 
.+  ( ( y 
.x.  X )  .+  X ) ) )
4033, 39syl3an3 1284 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( X  .+  ( y  .x.  X
) )  .+  X
)  =  ( X 
.+  ( ( y 
.x.  X )  .+  X ) ) )
4140adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( X 
.+  ( y  .x.  X ) )  .+  X )  =  ( X  .+  ( ( y  .x.  X ) 
.+  X ) ) )
42 grpmnd 12975 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  G  e.  Mnd )
43423ad2ant1 1020 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  ->  G  e.  Mnd )
44 simp3 1001 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
y  e.  NN0 )
45 simp2 1000 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  ->  X  e.  B )
4621, 25, 22mulgnn0p1 13098 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X )  .+  X ) )
4743, 44, 45, 46syl3anc 1249 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( y  +  1 )  .x.  X
)  =  ( ( y  .x.  X ) 
.+  X ) )
4847eqeq1d 2198 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( ( y  +  1 )  .x.  X )  =  ( X  .+  ( y 
.x.  X ) )  <-> 
( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) ) )
4948biimpar 297 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( y  +  1 )  .x.  X )  =  ( X  .+  ( y 
.x.  X ) ) )
5049oveq1d 5915 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( ( X  .+  (
y  .x.  X )
)  .+  X )
)
5147oveq2d 5916 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( X  .+  (
( y  +  1 )  .x.  X ) )  =  ( X 
.+  ( ( y 
.x.  X )  .+  X ) ) )
5251adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( X  .+  ( ( y  +  1 )  .x.  X
) )  =  ( X  .+  ( ( y  .x.  X ) 
.+  X ) ) )
5341, 50, 523eqtr4d 2232 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( X  .+  ( ( y  +  1 ) 
.x.  X ) ) )
5453ex 115 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  y  e.  NN0 )  -> 
( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( X  .+  ( ( y  +  1 ) 
.x.  X ) ) ) )
55543expia 1207 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN0  ->  ( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .+  X )  =  ( X  .+  ( ( y  +  1 ) 
.x.  X ) ) ) ) )
56 nnz 9307 . . . . . 6  |-  ( y  e.  NN  ->  y  e.  ZZ )
5721, 25, 22mulgaddcomlem 13110 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  /\  ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) )
58573exp1 1225 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
y  e.  ZZ  ->  ( X  e.  B  -> 
( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) ) ) )
5958com23 78 . . . . . . 7  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( y  e.  ZZ  ->  ( ( ( y  .x.  X )  .+  X
)  =  ( X 
.+  ( y  .x.  X ) )  -> 
( ( -u y  .x.  X )  .+  X
)  =  ( X 
.+  ( -u y  .x.  X ) ) ) ) ) )
6059imp 124 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  ZZ  ->  ( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) ) )
6156, 60syl5 32 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( y  e.  NN  ->  ( ( ( y 
.x.  X )  .+  X )  =  ( X  .+  ( y 
.x.  X ) )  ->  ( ( -u y  .x.  X )  .+  X )  =  ( X  .+  ( -u y  .x.  X ) ) ) ) )
624, 8, 12, 16, 20, 32, 55, 61zindd 9406 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X )  .+  X
)  =  ( X 
.+  ( N  .x.  X ) ) ) )
6362ex 115 . . 3  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X
)  .+  X )  =  ( X  .+  ( N  .x.  X ) ) ) ) )
6463com23 78 . 2  |-  ( G  e.  Grp  ->  ( N  e.  ZZ  ->  ( X  e.  B  -> 
( ( N  .x.  X )  .+  X
)  =  ( X 
.+  ( N  .x.  X ) ) ) ) )
65643imp 1195 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  (
( N  .x.  X
)  .+  X )  =  ( X  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5238  (class class class)co 5900   0cc0 7846   1c1 7847    + caddc 7849   -ucneg 8164   NNcn 8954   NN0cn0 9211   ZZcz 9288   Basecbs 12523   +g cplusg 12600   0gc0g 12772   Mndcmnd 12900   Grpcgrp 12968  .gcmg 13084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-inn 8955  df-2 9013  df-n0 9212  df-z 9289  df-uz 9564  df-seqfrec 10485  df-ndx 12526  df-slot 12527  df-base 12529  df-plusg 12613  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-minusg 12972  df-mulg 13085
This theorem is referenced by:  mulginvcom  13112
  Copyright terms: Public domain W3C validator