ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpox Unicode version

Theorem ovmpox 6005
Description: The value of an operation class abstraction. Variant of ovmpoga 6006 which does not require  D and  x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpox.1  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
ovmpox.2  |-  ( x  =  A  ->  D  =  L )
ovmpox.3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ovmpox  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, L, y   
x, S, y
Allowed substitution hints:    D( x, y)    R( x, y)    F( x, y)    H( x, y)

Proof of Theorem ovmpox
StepHypRef Expression
1 elex 2750 . 2  |-  ( S  e.  H  ->  S  e.  _V )
2 ovmpox.3 . . . 4  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
32a1i 9 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
4 ovmpox.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
54adantl 277 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
6 ovmpox.2 . . . 4  |-  ( x  =  A  ->  D  =  L )
76adantl 277 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  /\  x  =  A )  ->  D  =  L )
8 simp1 997 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  A  e.  C )
9 simp2 998 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  B  e.  L )
10 simp3 999 . . 3  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  S  e.  _V )
113, 5, 7, 8, 9, 10ovmpodx 6003 . 2  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  _V )  ->  ( A F B )  =  S )
121, 11syl3an3 1273 1  |-  ( ( A  e.  C  /\  B  e.  L  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2739  (class class class)co 5877    e. cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882
This theorem is referenced by:  reldvg  14233
  Copyright terms: Public domain W3C validator