ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeof1o2 Unicode version

Theorem hmeof1o2 14976
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeof1o2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  F : X -1-1-onto-> Y
)

Proof of Theorem hmeof1o2
StepHypRef Expression
1 hmeocn 14973 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
2 cnf2 14873 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : X --> Y )
31, 2syl3an3 1306 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  F : X --> Y )
43ffnd 5473 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  F  Fn  X
)
5 hmeocnvcn 14974 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
6 cnf2 14873 . . . . 5  |-  ( ( K  e.  (TopOn `  Y )  /\  J  e.  (TopOn `  X )  /\  `' F  e.  ( K  Cn  J ) )  ->  `' F : Y
--> X )
763com12 1231 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  `' F  e.  ( K  Cn  J ) )  ->  `' F : Y
--> X )
85, 7syl3an3 1306 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  `' F : Y
--> X )
98ffnd 5473 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  `' F  Fn  Y )
10 dff1o4 5579 . 2  |-  ( F : X -1-1-onto-> Y  <->  ( F  Fn  X  /\  `' F  Fn  Y ) )
114, 9, 10sylanbrc 417 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  F : X -1-1-onto-> Y
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    e. wcel 2200   `'ccnv 4717    Fn wfn 5312   -->wf 5313   -1-1-onto->wf1o 5316   ` cfv 5317  (class class class)co 6000  TopOnctopon 14678    Cn ccn 14853   Homeochmeo 14968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-top 14666  df-topon 14679  df-cn 14856  df-hmeo 14969
This theorem is referenced by:  hmeof1o  14977
  Copyright terms: Public domain W3C validator