ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnanq0 Unicode version

Theorem nnanq0 7420
Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
nnanq0  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )
)

Proof of Theorem nnanq0
StepHypRef Expression
1 addnnnq0 7411 . . 3  |-  ( ( ( N  e.  om  /\  A  e.  N. )  /\  ( M  e.  om  /\  A  e.  N. )
)  ->  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )  =  [ <. (
( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  )
213impdir 1289 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )  =  [ <. ( ( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  )
3 pinn 7271 . . . . . . . 8  |-  ( A  e.  N.  ->  A  e.  om )
4 nnmcom 6468 . . . . . . . 8  |-  ( ( N  e.  om  /\  A  e.  om )  ->  ( N  .o  A
)  =  ( A  .o  N ) )
53, 4sylan2 284 . . . . . . 7  |-  ( ( N  e.  om  /\  A  e.  N. )  ->  ( N  .o  A
)  =  ( A  .o  N ) )
653adant2 1011 . . . . . 6  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( N  .o  A )  =  ( A  .o  N
) )
76oveq1d 5868 . . . . 5  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  (
( N  .o  A
)  +o  ( A  .o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M
) ) )
8 nndi 6465 . . . . . . 7  |-  ( ( A  e.  om  /\  N  e.  om  /\  M  e.  om )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
983coml 1205 . . . . . 6  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  om )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
103, 9syl3an3 1268 . . . . 5  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
117, 10eqtr4d 2206 . . . 4  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  (
( N  .o  A
)  +o  ( A  .o  M ) )  =  ( A  .o  ( N  +o  M
) ) )
1211opeq1d 3771 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  <. (
( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >.  =  <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A ) >. )
1312eceq1d 6549 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( ( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  =  [ <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A
) >. ] ~Q0  )
14 simp3 994 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  A  e.  N. )
15 nnacl 6459 . . . 4  |-  ( ( N  e.  om  /\  M  e.  om )  ->  ( N  +o  M
)  e.  om )
16153adant3 1012 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( N  +o  M )  e. 
om )
17 mulcanenq0ec 7407 . . 3  |-  ( ( A  e.  N.  /\  ( N  +o  M
)  e.  om  /\  A  e.  N. )  ->  [ <. ( A  .o  ( N  +o  M
) ) ,  ( A  .o  A )
>. ] ~Q0  =  [ <. ( N  +o  M ) ,  A >. ] ~Q0  )
1814, 16, 14, 17syl3anc 1233 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  =  [ <. ( N  +o  M ) ,  A >. ] ~Q0  )
192, 13, 183eqtrrd 2208 1  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1348    e. wcel 2141   <.cop 3586   omcom 4574  (class class class)co 5853    +o coa 6392    .o comu 6393   [cec 6511   N.cnpi 7234   ~Q0 ceq0 7248   +Q0 cplq0 7251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-enq0 7386  df-nq0 7387  df-plq0 7389
This theorem is referenced by:  nq02m  7427  prarloclemcalc  7464
  Copyright terms: Public domain W3C validator