ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnanq0 Unicode version

Theorem nnanq0 7459
Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
nnanq0  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )
)

Proof of Theorem nnanq0
StepHypRef Expression
1 addnnnq0 7450 . . 3  |-  ( ( ( N  e.  om  /\  A  e.  N. )  /\  ( M  e.  om  /\  A  e.  N. )
)  ->  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )  =  [ <. (
( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  )
213impdir 1294 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )  =  [ <. ( ( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  )
3 pinn 7310 . . . . . . . 8  |-  ( A  e.  N.  ->  A  e.  om )
4 nnmcom 6492 . . . . . . . 8  |-  ( ( N  e.  om  /\  A  e.  om )  ->  ( N  .o  A
)  =  ( A  .o  N ) )
53, 4sylan2 286 . . . . . . 7  |-  ( ( N  e.  om  /\  A  e.  N. )  ->  ( N  .o  A
)  =  ( A  .o  N ) )
653adant2 1016 . . . . . 6  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( N  .o  A )  =  ( A  .o  N
) )
76oveq1d 5892 . . . . 5  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  (
( N  .o  A
)  +o  ( A  .o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M
) ) )
8 nndi 6489 . . . . . . 7  |-  ( ( A  e.  om  /\  N  e.  om  /\  M  e.  om )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
983coml 1210 . . . . . 6  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  om )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
103, 9syl3an3 1273 . . . . 5  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
117, 10eqtr4d 2213 . . . 4  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  (
( N  .o  A
)  +o  ( A  .o  M ) )  =  ( A  .o  ( N  +o  M
) ) )
1211opeq1d 3786 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  <. (
( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >.  =  <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A ) >. )
1312eceq1d 6573 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( ( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  =  [ <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A
) >. ] ~Q0  )
14 simp3 999 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  A  e.  N. )
15 nnacl 6483 . . . 4  |-  ( ( N  e.  om  /\  M  e.  om )  ->  ( N  +o  M
)  e.  om )
16153adant3 1017 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( N  +o  M )  e. 
om )
17 mulcanenq0ec 7446 . . 3  |-  ( ( A  e.  N.  /\  ( N  +o  M
)  e.  om  /\  A  e.  N. )  ->  [ <. ( A  .o  ( N  +o  M
) ) ,  ( A  .o  A )
>. ] ~Q0  =  [ <. ( N  +o  M ) ,  A >. ] ~Q0  )
1814, 16, 14, 17syl3anc 1238 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  =  [ <. ( N  +o  M ) ,  A >. ] ~Q0  )
192, 13, 183eqtrrd 2215 1  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   <.cop 3597   omcom 4591  (class class class)co 5877    +o coa 6416    .o comu 6417   [cec 6535   N.cnpi 7273   ~Q0 ceq0 7287   +Q0 cplq0 7290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-mi 7307  df-enq0 7425  df-nq0 7426  df-plq0 7428
This theorem is referenced by:  nq02m  7466  prarloclemcalc  7503
  Copyright terms: Public domain W3C validator