ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnanq0 Unicode version

Theorem nnanq0 7573
Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
nnanq0  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )
)

Proof of Theorem nnanq0
StepHypRef Expression
1 addnnnq0 7564 . . 3  |-  ( ( ( N  e.  om  /\  A  e.  N. )  /\  ( M  e.  om  /\  A  e.  N. )
)  ->  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )  =  [ <. (
( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  )
213impdir 1307 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )  =  [ <. ( ( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  )
3 pinn 7424 . . . . . . . 8  |-  ( A  e.  N.  ->  A  e.  om )
4 nnmcom 6577 . . . . . . . 8  |-  ( ( N  e.  om  /\  A  e.  om )  ->  ( N  .o  A
)  =  ( A  .o  N ) )
53, 4sylan2 286 . . . . . . 7  |-  ( ( N  e.  om  /\  A  e.  N. )  ->  ( N  .o  A
)  =  ( A  .o  N ) )
653adant2 1019 . . . . . 6  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( N  .o  A )  =  ( A  .o  N
) )
76oveq1d 5961 . . . . 5  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  (
( N  .o  A
)  +o  ( A  .o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M
) ) )
8 nndi 6574 . . . . . . 7  |-  ( ( A  e.  om  /\  N  e.  om  /\  M  e.  om )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
983coml 1213 . . . . . 6  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  om )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
103, 9syl3an3 1285 . . . . 5  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
117, 10eqtr4d 2241 . . . 4  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  (
( N  .o  A
)  +o  ( A  .o  M ) )  =  ( A  .o  ( N  +o  M
) ) )
1211opeq1d 3825 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  <. (
( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >.  =  <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A ) >. )
1312eceq1d 6658 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( ( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  =  [ <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A
) >. ] ~Q0  )
14 simp3 1002 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  A  e.  N. )
15 nnacl 6568 . . . 4  |-  ( ( N  e.  om  /\  M  e.  om )  ->  ( N  +o  M
)  e.  om )
16153adant3 1020 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( N  +o  M )  e. 
om )
17 mulcanenq0ec 7560 . . 3  |-  ( ( A  e.  N.  /\  ( N  +o  M
)  e.  om  /\  A  e.  N. )  ->  [ <. ( A  .o  ( N  +o  M
) ) ,  ( A  .o  A )
>. ] ~Q0  =  [ <. ( N  +o  M ) ,  A >. ] ~Q0  )
1814, 16, 14, 17syl3anc 1250 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  =  [ <. ( N  +o  M ) ,  A >. ] ~Q0  )
192, 13, 183eqtrrd 2243 1  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   <.cop 3636   omcom 4639  (class class class)co 5946    +o coa 6501    .o comu 6502   [cec 6620   N.cnpi 7387   ~Q0 ceq0 7401   +Q0 cplq0 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-mi 7421  df-enq0 7539  df-nq0 7540  df-plq0 7542
This theorem is referenced by:  nq02m  7580  prarloclemcalc  7617
  Copyright terms: Public domain W3C validator