ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnanq0 Unicode version

Theorem nnanq0 7357
Description: Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
nnanq0  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )
)

Proof of Theorem nnanq0
StepHypRef Expression
1 addnnnq0 7348 . . 3  |-  ( ( ( N  e.  om  /\  A  e.  N. )  /\  ( M  e.  om  /\  A  e.  N. )
)  ->  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )  =  [ <. (
( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  )
213impdir 1273 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )  =  [ <. ( ( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  )
3 pinn 7208 . . . . . . . 8  |-  ( A  e.  N.  ->  A  e.  om )
4 nnmcom 6425 . . . . . . . 8  |-  ( ( N  e.  om  /\  A  e.  om )  ->  ( N  .o  A
)  =  ( A  .o  N ) )
53, 4sylan2 284 . . . . . . 7  |-  ( ( N  e.  om  /\  A  e.  N. )  ->  ( N  .o  A
)  =  ( A  .o  N ) )
653adant2 1001 . . . . . 6  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( N  .o  A )  =  ( A  .o  N
) )
76oveq1d 5829 . . . . 5  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  (
( N  .o  A
)  +o  ( A  .o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M
) ) )
8 nndi 6422 . . . . . . 7  |-  ( ( A  e.  om  /\  N  e.  om  /\  M  e.  om )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
983coml 1189 . . . . . 6  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  om )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
103, 9syl3an3 1252 . . . . 5  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( A  .o  ( N  +o  M ) )  =  ( ( A  .o  N )  +o  ( A  .o  M ) ) )
117, 10eqtr4d 2190 . . . 4  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  (
( N  .o  A
)  +o  ( A  .o  M ) )  =  ( A  .o  ( N  +o  M
) ) )
1211opeq1d 3743 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  <. (
( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >.  =  <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A ) >. )
1312eceq1d 6505 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( ( N  .o  A
)  +o  ( A  .o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  =  [ <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A
) >. ] ~Q0  )
14 simp3 984 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  A  e.  N. )
15 nnacl 6416 . . . 4  |-  ( ( N  e.  om  /\  M  e.  om )  ->  ( N  +o  M
)  e.  om )
16153adant3 1002 . . 3  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  ( N  +o  M )  e. 
om )
17 mulcanenq0ec 7344 . . 3  |-  ( ( A  e.  N.  /\  ( N  +o  M
)  e.  om  /\  A  e.  N. )  ->  [ <. ( A  .o  ( N  +o  M
) ) ,  ( A  .o  A )
>. ] ~Q0  =  [ <. ( N  +o  M ) ,  A >. ] ~Q0  )
1814, 16, 14, 17syl3anc 1217 . 2  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( A  .o  ( N  +o  M ) ) ,  ( A  .o  A ) >. ] ~Q0  =  [ <. ( N  +o  M ) ,  A >. ] ~Q0  )
192, 13, 183eqtrrd 2192 1  |-  ( ( N  e.  om  /\  M  e.  om  /\  A  e.  N. )  ->  [ <. ( N  +o  M ) ,  A >. ] ~Q0  =  ( [ <. N ,  A >. ] ~Q0 +Q0  [ <. M ,  A >. ] ~Q0  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 963    = wceq 1332    e. wcel 2125   <.cop 3559   omcom 4543  (class class class)co 5814    +o coa 6350    .o comu 6351   [cec 6467   N.cnpi 7171   ~Q0 ceq0 7185   +Q0 cplq0 7188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-oadd 6357  df-omul 6358  df-er 6469  df-ec 6471  df-qs 6475  df-ni 7203  df-mi 7205  df-enq0 7323  df-nq0 7324  df-plq0 7326
This theorem is referenced by:  nq02m  7364  prarloclemcalc  7401
  Copyright terms: Public domain W3C validator