![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an2 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an2.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3an2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl3an2.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | 3exp 1204 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl5 32 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | 3imp 1195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl3an2b 1286 syl3an2br 1289 syl3anl2 1298 nndi 6539 nnmass 6540 prarloclemarch2 7479 1idprl 7650 1idpru 7651 recexprlem1ssl 7693 recexprlem1ssu 7694 msqge0 8635 mulge0 8638 divsubdirap 8727 divdiv32ap 8739 peano2uz 9648 fzoshftral 10305 expdivap 10661 bcval5 10834 redivap 11018 imdivap 11025 absdiflt 11236 absdifle 11237 retanclap 11865 tannegap 11871 lcmgcdeq 12221 isprm3 12256 prmdvdsexpb 12287 dvdsprmpweqnn 12474 mulgaddcomlem 13215 mulginvcom 13217 cnpf2 14375 blres 14602 |
Copyright terms: Public domain | W3C validator |