| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an2 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 |
|
| syl3an2.2 |
|
| Ref | Expression |
|---|---|
| syl3an2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 |
. . 3
| |
| 2 | syl3an2.2 |
. . . 4
| |
| 3 | 2 | 3exp 1205 |
. . 3
|
| 4 | 1, 3 | syl5 32 |
. 2
|
| 5 | 4 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl3an2b 1287 syl3an2br 1290 syl3anl2 1299 nndi 6572 nnmass 6573 prarloclemarch2 7532 1idprl 7703 1idpru 7704 recexprlem1ssl 7746 recexprlem1ssu 7747 msqge0 8689 mulge0 8692 divsubdirap 8781 divdiv32ap 8793 peano2uz 9704 fzoshftral 10367 expdivap 10735 bcval5 10908 ccats1val1g 11091 redivap 11185 imdivap 11192 absdiflt 11403 absdifle 11404 retanclap 12033 tannegap 12039 lcmgcdeq 12405 isprm3 12440 prmdvdsexpb 12471 dvdsprmpweqnn 12659 mulgaddcomlem 13481 mulginvcom 13483 cnpf2 14679 blres 14906 |
| Copyright terms: Public domain | W3C validator |