ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an2 Unicode version

Theorem syl3an2 1305
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an2.1  |-  ( ph  ->  ch )
syl3an2.2  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
Assertion
Ref Expression
syl3an2  |-  ( ( ps  /\  ph  /\  th )  ->  ta )

Proof of Theorem syl3an2
StepHypRef Expression
1 syl3an2.1 . . 3  |-  ( ph  ->  ch )
2 syl3an2.2 . . . 4  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
323exp 1226 . . 3  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
41, 3syl5 32 . 2  |-  ( ps 
->  ( ph  ->  ( th  ->  ta ) ) )
543imp 1217 1  |-  ( ( ps  /\  ph  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  syl3an2b  1308  syl3an2br  1311  syl3anl2  1320  nndi  6632  nnmass  6633  prarloclemarch2  7606  1idprl  7777  1idpru  7778  recexprlem1ssl  7820  recexprlem1ssu  7821  msqge0  8763  mulge0  8766  divsubdirap  8855  divdiv32ap  8867  peano2uz  9778  fzoshftral  10444  expdivap  10812  bcval5  10985  ccats1val1g  11170  redivap  11385  imdivap  11392  absdiflt  11603  absdifle  11604  retanclap  12233  tannegap  12239  lcmgcdeq  12605  isprm3  12640  prmdvdsexpb  12671  dvdsprmpweqnn  12859  mulgaddcomlem  13682  mulginvcom  13684  cnpf2  14881  blres  15108
  Copyright terms: Public domain W3C validator