![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an2 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an2.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3an2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl3an2.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | 3exp 1204 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl5 32 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | 3imp 1195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl3an2b 1286 syl3an2br 1289 syl3anl2 1298 nndi 6541 nnmass 6542 prarloclemarch2 7481 1idprl 7652 1idpru 7653 recexprlem1ssl 7695 recexprlem1ssu 7696 msqge0 8637 mulge0 8640 divsubdirap 8729 divdiv32ap 8741 peano2uz 9651 fzoshftral 10308 expdivap 10664 bcval5 10837 redivap 11021 imdivap 11028 absdiflt 11239 absdifle 11240 retanclap 11868 tannegap 11874 lcmgcdeq 12224 isprm3 12259 prmdvdsexpb 12290 dvdsprmpweqnn 12477 mulgaddcomlem 13218 mulginvcom 13220 cnpf2 14386 blres 14613 |
Copyright terms: Public domain | W3C validator |