| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an2 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 |
|
| syl3an2.2 |
|
| Ref | Expression |
|---|---|
| syl3an2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 |
. . 3
| |
| 2 | syl3an2.2 |
. . . 4
| |
| 3 | 2 | 3exp 1226 |
. . 3
|
| 4 | 1, 3 | syl5 32 |
. 2
|
| 5 | 4 | 3imp 1217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl3an2b 1308 syl3an2br 1311 syl3anl2 1320 nndi 6632 nnmass 6633 prarloclemarch2 7606 1idprl 7777 1idpru 7778 recexprlem1ssl 7820 recexprlem1ssu 7821 msqge0 8763 mulge0 8766 divsubdirap 8855 divdiv32ap 8867 peano2uz 9778 fzoshftral 10444 expdivap 10812 bcval5 10985 ccats1val1g 11170 redivap 11385 imdivap 11392 absdiflt 11603 absdifle 11604 retanclap 12233 tannegap 12239 lcmgcdeq 12605 isprm3 12640 prmdvdsexpb 12671 dvdsprmpweqnn 12859 mulgaddcomlem 13682 mulginvcom 13684 cnpf2 14881 blres 15108 |
| Copyright terms: Public domain | W3C validator |