Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an2 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an2.1 | |
syl3an2.2 |
Ref | Expression |
---|---|
syl3an2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an2.1 | . . 3 | |
2 | syl3an2.2 | . . . 4 | |
3 | 2 | 3exp 1202 | . . 3 |
4 | 1, 3 | syl5 32 | . 2 |
5 | 4 | 3imp 1193 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: syl3an2b 1275 syl3an2br 1278 syl3anl2 1287 nndi 6477 nnmass 6478 prarloclemarch2 7393 1idprl 7564 1idpru 7565 recexprlem1ssl 7607 recexprlem1ssu 7608 msqge0 8547 mulge0 8550 divsubdirap 8637 divdiv32ap 8649 peano2uz 9554 fzoshftral 10206 expdivap 10539 bcval5 10709 redivap 10849 imdivap 10856 absdiflt 11067 absdifle 11068 retanclap 11696 tannegap 11702 lcmgcdeq 12048 isprm3 12083 prmdvdsexpb 12114 dvdsprmpweqnn 12300 mulgaddcomlem 12864 mulginvcom 12866 cnpf2 13258 blres 13485 |
Copyright terms: Public domain | W3C validator |