| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an2 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2.1 |
|
| syl3an2.2 |
|
| Ref | Expression |
|---|---|
| syl3an2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2.1 |
. . 3
| |
| 2 | syl3an2.2 |
. . . 4
| |
| 3 | 2 | 3exp 1205 |
. . 3
|
| 4 | 1, 3 | syl5 32 |
. 2
|
| 5 | 4 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl3an2b 1287 syl3an2br 1290 syl3anl2 1299 nndi 6595 nnmass 6596 prarloclemarch2 7567 1idprl 7738 1idpru 7739 recexprlem1ssl 7781 recexprlem1ssu 7782 msqge0 8724 mulge0 8727 divsubdirap 8816 divdiv32ap 8828 peano2uz 9739 fzoshftral 10404 expdivap 10772 bcval5 10945 ccats1val1g 11129 redivap 11300 imdivap 11307 absdiflt 11518 absdifle 11519 retanclap 12148 tannegap 12154 lcmgcdeq 12520 isprm3 12555 prmdvdsexpb 12586 dvdsprmpweqnn 12774 mulgaddcomlem 13596 mulginvcom 13598 cnpf2 14794 blres 15021 |
| Copyright terms: Public domain | W3C validator |