Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpoga | Unicode version |
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovmpoga.1 | |
ovmpoga.2 |
Ref | Expression |
---|---|
ovmpoga |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | ovmpoga.2 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | ovmpoga.1 | . . . 4 | |
5 | 4 | adantl 275 | . . 3 |
6 | simp1 992 | . . 3 | |
7 | simp2 993 | . . 3 | |
8 | simp3 994 | . . 3 | |
9 | 3, 5, 6, 7, 8 | ovmpod 5980 | . 2 |
10 | 1, 9 | syl3an3 1268 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 cvv 2730 (class class class)co 5853 cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: ovmpoa 5983 ovmpog 5987 elovmpo 6050 offval 6068 offval3 6113 xaddval 9802 fzoval 10104 eucalgval2 12007 pcval 12250 setsvalg 12446 ressid2 12477 ressval2 12478 restval 12585 ismhm 12685 txvalex 13048 txval 13049 cnmpt12 13081 cnmpt22 13088 hmeofvalg 13097 bdmetval 13294 xmetxp 13301 xmetxpbl 13302 txmetcnp 13312 limccl 13422 ellimc3apf 13423 lgsval 13699 |
Copyright terms: Public domain | W3C validator |