Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpoga | Unicode version |
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
ovmpoga.1 | |
ovmpoga.2 |
Ref | Expression |
---|---|
ovmpoga |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2736 | . 2 | |
2 | ovmpoga.2 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | ovmpoga.1 | . . . 4 | |
5 | 4 | adantl 275 | . . 3 |
6 | simp1 987 | . . 3 | |
7 | simp2 988 | . . 3 | |
8 | simp3 989 | . . 3 | |
9 | 3, 5, 6, 7, 8 | ovmpod 5965 | . 2 |
10 | 1, 9 | syl3an3 1263 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cvv 2725 (class class class)co 5841 cmpo 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-ov 5844 df-oprab 5845 df-mpo 5846 |
This theorem is referenced by: ovmpoa 5968 ovmpog 5972 elovmpo 6038 offval 6056 offval3 6099 xaddval 9777 fzoval 10079 eucalgval2 11981 pcval 12224 setsvalg 12420 ressid2 12449 ressval2 12450 restval 12557 txvalex 12854 txval 12855 cnmpt12 12887 cnmpt22 12894 hmeofvalg 12903 bdmetval 13100 xmetxp 13107 xmetxpbl 13108 txmetcnp 13118 limccl 13228 ellimc3apf 13229 lgsval 13505 |
Copyright terms: Public domain | W3C validator |