ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpoga Unicode version

Theorem ovmpoga 6056
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpoga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
ovmpoga.2  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ovmpoga  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, S, y
Allowed substitution hints:    R( x, y)    F( x, y)    H( x, y)

Proof of Theorem ovmpoga
StepHypRef Expression
1 elex 2774 . 2  |-  ( S  e.  H  ->  S  e.  _V )
2 ovmpoga.2 . . . 4  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
32a1i 9 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
4 ovmpoga.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
54adantl 277 . . 3  |-  ( ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
6 simp1 999 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  A  e.  C )
7 simp2 1000 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  B  e.  D )
8 simp3 1001 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  S  e.  _V )
93, 5, 6, 7, 8ovmpod 6054 . 2  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  _V )  ->  ( A F B )  =  S )
101, 9syl3an3 1284 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763  (class class class)co 5925    e. cmpo 5927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930
This theorem is referenced by:  ovmpoa  6057  ovmpog  6061  elovmpo  6126  offval  6147  offval3  6200  xaddval  9937  fzoval  10240  eucalgval2  12246  pcval  12490  setsvalg  12733  restval  12947  prdsex  12971  pwsval  12993  xpsfval  13050  xpsval  13054  ismhm  13163  eqgfval  13428  isrhm  13790  txvalex  14574  txval  14575  cnmpt12  14607  cnmpt22  14614  hmeofvalg  14623  bdmetval  14820  xmetxp  14827  xmetxpbl  14828  txmetcnp  14838  limccl  14979  ellimc3apf  14980  sgmval  15303  lgsval  15329
  Copyright terms: Public domain W3C validator