ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponcomb Unicode version

Theorem toponcomb 12397
Description: Biconditional form of toponcom 12396. (Contributed by BJ, 5-Dec-2021.)
Assertion
Ref Expression
toponcomb  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  <->  K  e.  (TopOn `  U. J ) ) )

Proof of Theorem toponcomb
StepHypRef Expression
1 toponcom 12396 . . . 4  |-  ( ( K  e.  Top  /\  J  e.  (TopOn `  U. K ) )  ->  K  e.  (TopOn `  U. J ) )
21ex 114 . . 3  |-  ( K  e.  Top  ->  ( J  e.  (TopOn `  U. K )  ->  K  e.  (TopOn `  U. J ) ) )
32adantl 275 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  ->  K  e.  (TopOn `  U. J ) ) )
4 toponcom 12396 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  (TopOn `  U. J ) )  ->  J  e.  (TopOn `  U. K ) )
54ex 114 . . 3  |-  ( J  e.  Top  ->  ( K  e.  (TopOn `  U. J )  ->  J  e.  (TopOn `  U. K ) ) )
65adantr 274 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( K  e.  (TopOn `  U. J )  ->  J  e.  (TopOn `  U. K ) ) )
73, 6impbid 128 1  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  <->  K  e.  (TopOn `  U. J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2128   U.cuni 3772   ` cfv 5169   Topctop 12366  TopOnctopon 12379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-topon 12380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator