ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponcomb Unicode version

Theorem toponcomb 14533
Description: Biconditional form of toponcom 14532. (Contributed by BJ, 5-Dec-2021.)
Assertion
Ref Expression
toponcomb  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  <->  K  e.  (TopOn `  U. J ) ) )

Proof of Theorem toponcomb
StepHypRef Expression
1 toponcom 14532 . . . 4  |-  ( ( K  e.  Top  /\  J  e.  (TopOn `  U. K ) )  ->  K  e.  (TopOn `  U. J ) )
21ex 115 . . 3  |-  ( K  e.  Top  ->  ( J  e.  (TopOn `  U. K )  ->  K  e.  (TopOn `  U. J ) ) )
32adantl 277 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  ->  K  e.  (TopOn `  U. J ) ) )
4 toponcom 14532 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  (TopOn `  U. J ) )  ->  J  e.  (TopOn `  U. K ) )
54ex 115 . . 3  |-  ( J  e.  Top  ->  ( K  e.  (TopOn `  U. J )  ->  J  e.  (TopOn `  U. K ) ) )
65adantr 276 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( K  e.  (TopOn `  U. J )  ->  J  e.  (TopOn `  U. K ) ) )
73, 6impbid 129 1  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  <->  K  e.  (TopOn `  U. J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   U.cuni 3850   ` cfv 5272   Topctop 14502  TopOnctopon 14515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-topon 14516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator