ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponcomb Unicode version

Theorem toponcomb 12666
Description: Biconditional form of toponcom 12665. (Contributed by BJ, 5-Dec-2021.)
Assertion
Ref Expression
toponcomb  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  <->  K  e.  (TopOn `  U. J ) ) )

Proof of Theorem toponcomb
StepHypRef Expression
1 toponcom 12665 . . . 4  |-  ( ( K  e.  Top  /\  J  e.  (TopOn `  U. K ) )  ->  K  e.  (TopOn `  U. J ) )
21ex 114 . . 3  |-  ( K  e.  Top  ->  ( J  e.  (TopOn `  U. K )  ->  K  e.  (TopOn `  U. J ) ) )
32adantl 275 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  ->  K  e.  (TopOn `  U. J ) ) )
4 toponcom 12665 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  (TopOn `  U. J ) )  ->  J  e.  (TopOn `  U. K ) )
54ex 114 . . 3  |-  ( J  e.  Top  ->  ( K  e.  (TopOn `  U. J )  ->  J  e.  (TopOn `  U. K ) ) )
65adantr 274 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( K  e.  (TopOn `  U. J )  ->  J  e.  (TopOn `  U. K ) ) )
73, 6impbid 128 1  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  <->  K  e.  (TopOn `  U. J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   U.cuni 3789   ` cfv 5188   Topctop 12635  TopOnctopon 12648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-topon 12649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator