ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponcomb Unicode version

Theorem toponcomb 14196
Description: Biconditional form of toponcom 14195. (Contributed by BJ, 5-Dec-2021.)
Assertion
Ref Expression
toponcomb  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  <->  K  e.  (TopOn `  U. J ) ) )

Proof of Theorem toponcomb
StepHypRef Expression
1 toponcom 14195 . . . 4  |-  ( ( K  e.  Top  /\  J  e.  (TopOn `  U. K ) )  ->  K  e.  (TopOn `  U. J ) )
21ex 115 . . 3  |-  ( K  e.  Top  ->  ( J  e.  (TopOn `  U. K )  ->  K  e.  (TopOn `  U. J ) ) )
32adantl 277 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  ->  K  e.  (TopOn `  U. J ) ) )
4 toponcom 14195 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  (TopOn `  U. J ) )  ->  J  e.  (TopOn `  U. K ) )
54ex 115 . . 3  |-  ( J  e.  Top  ->  ( K  e.  (TopOn `  U. J )  ->  J  e.  (TopOn `  U. K ) ) )
65adantr 276 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( K  e.  (TopOn `  U. J )  ->  J  e.  (TopOn `  U. K ) ) )
73, 6impbid 129 1  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn `  U. K )  <->  K  e.  (TopOn `  U. J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   U.cuni 3835   ` cfv 5254   Topctop 14165  TopOnctopon 14178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-topon 14179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator