Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > toponcom | Unicode version |
Description: If is a topology on the base set of topology , then is a topology on the base of . (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
toponcom | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 12653 | . . . 4 TopOn | |
2 | 1 | eqcomd 2171 | . . 3 TopOn |
3 | 2 | anim2i 340 | . 2 TopOn |
4 | istopon 12651 | . 2 TopOn | |
5 | 3, 4 | sylibr 133 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cuni 3789 cfv 5188 ctop 12635 TopOnctopon 12648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topon 12649 |
This theorem is referenced by: toponcomb 12666 |
Copyright terms: Public domain | W3C validator |