| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > toponcomb | GIF version | ||
| Description: Biconditional form of toponcom 14263. (Contributed by BJ, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| toponcomb | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponcom 14263 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝐽 ∈ (TopOn‘∪ 𝐾)) → 𝐾 ∈ (TopOn‘∪ 𝐽)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝐾 ∈ Top → (𝐽 ∈ (TopOn‘∪ 𝐾) → 𝐾 ∈ (TopOn‘∪ 𝐽))) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) → 𝐾 ∈ (TopOn‘∪ 𝐽))) |
| 4 | toponcom 14263 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) | |
| 5 | 4 | ex 115 | . . 3 ⊢ (𝐽 ∈ Top → (𝐾 ∈ (TopOn‘∪ 𝐽) → 𝐽 ∈ (TopOn‘∪ 𝐾))) |
| 6 | 5 | adantr 276 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐾 ∈ (TopOn‘∪ 𝐽) → 𝐽 ∈ (TopOn‘∪ 𝐾))) |
| 7 | 3, 6 | impbid 129 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ∪ cuni 3839 ‘cfv 5258 Topctop 14233 TopOnctopon 14246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-topon 14247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |