![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > toponcomb | GIF version |
Description: Biconditional form of toponcom 13979. (Contributed by BJ, 5-Dec-2021.) |
Ref | Expression |
---|---|
toponcomb | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponcom 13979 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝐽 ∈ (TopOn‘∪ 𝐾)) → 𝐾 ∈ (TopOn‘∪ 𝐽)) | |
2 | 1 | ex 115 | . . 3 ⊢ (𝐾 ∈ Top → (𝐽 ∈ (TopOn‘∪ 𝐾) → 𝐾 ∈ (TopOn‘∪ 𝐽))) |
3 | 2 | adantl 277 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) → 𝐾 ∈ (TopOn‘∪ 𝐽))) |
4 | toponcom 13979 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) | |
5 | 4 | ex 115 | . . 3 ⊢ (𝐽 ∈ Top → (𝐾 ∈ (TopOn‘∪ 𝐽) → 𝐽 ∈ (TopOn‘∪ 𝐾))) |
6 | 5 | adantr 276 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐾 ∈ (TopOn‘∪ 𝐽) → 𝐽 ∈ (TopOn‘∪ 𝐾))) |
7 | 3, 6 | impbid 129 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2160 ∪ cuni 3824 ‘cfv 5235 Topctop 13949 TopOnctopon 13962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-topon 13963 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |