ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontopon Unicode version

Theorem topontopon 11886
Description: A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
topontopon  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  (TopOn `  U. J ) )

Proof of Theorem topontopon
StepHypRef Expression
1 topontop 11880 . 2  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 toptopon2 11885 . 2  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
31, 2sylib 121 1  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  (TopOn `  U. J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1445   U.cuni 3675   ` cfv 5049   Topctop 11863  TopOnctopon 11876
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-topon 11877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator