ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontop Unicode version

Theorem topontop 13484
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
topontop  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )

Proof of Theorem topontop
StepHypRef Expression
1 istopon 13483 . 2  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )
21simplbi 274 1  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   U.cuni 3809   ` cfv 5216   Topctop 13467  TopOnctopon 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-topon 13481
This theorem is referenced by:  topontopi  13486  topontopon  13490  toponmax  13495  topgele  13499  istps  13502  topontopn  13507  resttopon  13641  resttopon2  13648  lmfval  13662  cnfval  13664  cnpfval  13665  cnprcl2k  13676  cnpf2  13677  tgcn  13678  tgcnp  13679  iscnp4  13688  cnntr  13695  cncnp  13700  cnptopresti  13708  txtopon  13732  txcnp  13741  txlm  13749  cnmpt2res  13767  mopntop  13914  metcnpi  13985  metcnpi3  13987  dvfvalap  14120  dvfgg  14127  dvaddxxbr  14135  dvmulxxbr  14136
  Copyright terms: Public domain W3C validator