| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topontop | Unicode version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 14600 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-topon 14598 |
| This theorem is referenced by: topontopi 14603 topontopon 14607 toponmax 14612 topgele 14616 istps 14619 topontopn 14624 resttopon 14758 resttopon2 14765 lmfval 14779 cnfval 14781 cnpfval 14782 cnprcl2k 14793 cnpf2 14794 tgcn 14795 tgcnp 14796 iscnp4 14805 cnntr 14812 cncnp 14817 cnptopresti 14825 txtopon 14849 txcnp 14858 txlm 14866 cnmpt2res 14884 mopntop 15031 metcnpi 15102 metcnpi3 15104 dvfvalap 15268 dvfgg 15275 dvaddxxbr 15288 dvmulxxbr 15289 |
| Copyright terms: Public domain | W3C validator |