| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topontop | Unicode version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 14333 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-topon 14331 |
| This theorem is referenced by: topontopi 14336 topontopon 14340 toponmax 14345 topgele 14349 istps 14352 topontopn 14357 resttopon 14491 resttopon2 14498 lmfval 14512 cnfval 14514 cnpfval 14515 cnprcl2k 14526 cnpf2 14527 tgcn 14528 tgcnp 14529 iscnp4 14538 cnntr 14545 cncnp 14550 cnptopresti 14558 txtopon 14582 txcnp 14591 txlm 14599 cnmpt2res 14617 mopntop 14764 metcnpi 14835 metcnpi3 14837 dvfvalap 15001 dvfgg 15008 dvaddxxbr 15021 dvmulxxbr 15022 |
| Copyright terms: Public domain | W3C validator |