| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topontop | Unicode version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 14687 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-topon 14685 |
| This theorem is referenced by: topontopi 14690 topontopon 14694 toponmax 14699 topgele 14703 istps 14706 topontopn 14711 resttopon 14845 resttopon2 14852 lmfval 14867 cnfval 14868 cnpfval 14869 cnprcl2k 14880 cnpf2 14881 tgcn 14882 tgcnp 14883 iscnp4 14892 cnntr 14899 cncnp 14904 cnptopresti 14912 txtopon 14936 txcnp 14945 txlm 14953 cnmpt2res 14971 mopntop 15118 metcnpi 15189 metcnpi3 15191 dvfvalap 15355 dvfgg 15362 dvaddxxbr 15375 dvmulxxbr 15376 |
| Copyright terms: Public domain | W3C validator |