| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topontop | Unicode version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 14518 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-topon 14516 |
| This theorem is referenced by: topontopi 14521 topontopon 14525 toponmax 14530 topgele 14534 istps 14537 topontopn 14542 resttopon 14676 resttopon2 14683 lmfval 14697 cnfval 14699 cnpfval 14700 cnprcl2k 14711 cnpf2 14712 tgcn 14713 tgcnp 14714 iscnp4 14723 cnntr 14730 cncnp 14735 cnptopresti 14743 txtopon 14767 txcnp 14776 txlm 14784 cnmpt2res 14802 mopntop 14949 metcnpi 15020 metcnpi3 15022 dvfvalap 15186 dvfgg 15193 dvaddxxbr 15206 dvmulxxbr 15207 |
| Copyright terms: Public domain | W3C validator |