ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontop Unicode version

Theorem topontop 14250
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
topontop  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )

Proof of Theorem topontop
StepHypRef Expression
1 istopon 14249 . 2  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )
21simplbi 274 1  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   U.cuni 3839   ` cfv 5258   Topctop 14233  TopOnctopon 14246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-topon 14247
This theorem is referenced by:  topontopi  14252  topontopon  14256  toponmax  14261  topgele  14265  istps  14268  topontopn  14273  resttopon  14407  resttopon2  14414  lmfval  14428  cnfval  14430  cnpfval  14431  cnprcl2k  14442  cnpf2  14443  tgcn  14444  tgcnp  14445  iscnp4  14454  cnntr  14461  cncnp  14466  cnptopresti  14474  txtopon  14498  txcnp  14507  txlm  14515  cnmpt2res  14533  mopntop  14680  metcnpi  14751  metcnpi3  14753  dvfvalap  14917  dvfgg  14924  dvaddxxbr  14937  dvmulxxbr  14938
  Copyright terms: Public domain W3C validator