ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontop Unicode version

Theorem topontop 13553
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
topontop  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )

Proof of Theorem topontop
StepHypRef Expression
1 istopon 13552 . 2  |-  ( J  e.  (TopOn `  B
)  <->  ( J  e. 
Top  /\  B  =  U. J ) )
21simplbi 274 1  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   U.cuni 3811   ` cfv 5218   Topctop 13536  TopOnctopon 13549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-topon 13550
This theorem is referenced by:  topontopi  13555  topontopon  13559  toponmax  13564  topgele  13568  istps  13571  topontopn  13576  resttopon  13710  resttopon2  13717  lmfval  13731  cnfval  13733  cnpfval  13734  cnprcl2k  13745  cnpf2  13746  tgcn  13747  tgcnp  13748  iscnp4  13757  cnntr  13764  cncnp  13769  cnptopresti  13777  txtopon  13801  txcnp  13810  txlm  13818  cnmpt2res  13836  mopntop  13983  metcnpi  14054  metcnpi3  14056  dvfvalap  14189  dvfgg  14196  dvaddxxbr  14204  dvmulxxbr  14205
  Copyright terms: Public domain W3C validator