ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponrestid Unicode version

Theorem toponrestid 13998
Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
Hypothesis
Ref Expression
toponrestid.t  |-  A  e.  (TopOn `  B )
Assertion
Ref Expression
toponrestid  |-  A  =  ( At  B )

Proof of Theorem toponrestid
StepHypRef Expression
1 toponrestid.t . . 3  |-  A  e.  (TopOn `  B )
21toponunii 13994 . . . 4  |-  B  = 
U. A
32restid 12758 . . 3  |-  ( A  e.  (TopOn `  B
)  ->  ( At  B
)  =  A )
41, 3ax-mp 5 . 2  |-  ( At  B )  =  A
54eqcomi 2193 1  |-  A  =  ( At  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5897   ↾t crest 12747  TopOnctopon 13987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-rest 12749  df-topon 13988
This theorem is referenced by:  cncfcn1cntop  14558  cncfmpt2fcntop  14562  cnrehmeocntop  14570  cnlimcim  14617  cnlimc  14618  dvidlemap  14637  dvcnp2cntop  14640  dvcn  14641  dvaddxxbr  14642  dvmulxxbr  14643  dvcoapbr  14648  dvcjbr  14649  dvrecap  14654  dveflem  14664
  Copyright terms: Public domain W3C validator