ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponrestid Unicode version

Theorem toponrestid 14493
Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
Hypothesis
Ref Expression
toponrestid.t  |-  A  e.  (TopOn `  B )
Assertion
Ref Expression
toponrestid  |-  A  =  ( At  B )

Proof of Theorem toponrestid
StepHypRef Expression
1 toponrestid.t . . 3  |-  A  e.  (TopOn `  B )
21toponunii 14489 . . . 4  |-  B  = 
U. A
32restid 13082 . . 3  |-  ( A  e.  (TopOn `  B
)  ->  ( At  B
)  =  A )
41, 3ax-mp 5 . 2  |-  ( At  B )  =  A
54eqcomi 2209 1  |-  A  =  ( At  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   ↾t crest 13071  TopOnctopon 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-rest 13073  df-topon 14483
This theorem is referenced by:  cncfcn1cntop  15066  cncfmpt2fcntop  15071  cnrehmeocntop  15082  cnlimcim  15143  cnlimc  15144  dvidlemap  15163  dvcnp2cntop  15171  dvcn  15172  dvaddxxbr  15173  dvmulxxbr  15174  dvcoapbr  15179  dvcjbr  15180  dvrecap  15185  dveflem  15198  dvply1  15237
  Copyright terms: Public domain W3C validator