Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > toptopon2 | Unicode version |
Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
toptopon2 | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 | |
2 | 1 | toptopon 12810 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2141 cuni 3796 cfv 5198 ctop 12789 TopOnctopon 12802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-topon 12803 |
This theorem is referenced by: topontopon 12812 lmreltop 12987 cnovex 12990 cnptopco 13016 cnptopresti 13032 lmtopcnp 13044 lmcn 13045 txcnmpt 13067 txdis1cn 13072 lmcn2 13074 cnmpt1t 13079 cnmpt12 13081 cnmpt21 13085 cnmpt21f 13086 cnmpt2t 13087 cnmpt22 13088 cnmpt22f 13089 cnmptcom 13092 limccnp2lem 13439 limccnp2cntop 13440 |
Copyright terms: Public domain | W3C validator |