ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucuniel Unicode version

Theorem nnsucuniel 6384
Description: Given an element  A of the union of a natural number  B,  suc  A is an element of  B itself. The reverse direction holds for all ordinals (sucunielr 4421). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4441). (Contributed by Jim Kingdon, 13-Mar-2022.)
Assertion
Ref Expression
nnsucuniel  |-  ( B  e.  om  ->  ( A  e.  U. B  <->  suc  A  e.  B ) )

Proof of Theorem nnsucuniel
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 noel 3362 . . . . . . 7  |-  -.  A  e.  (/)
2 uni0 3758 . . . . . . . 8  |-  U. (/)  =  (/)
32eleq2i 2204 . . . . . . 7  |-  ( A  e.  U. (/)  <->  A  e.  (/) )
41, 3mtbir 660 . . . . . 6  |-  -.  A  e.  U. (/)
5 unieq 3740 . . . . . . 7  |-  ( B  =  (/)  ->  U. B  =  U. (/) )
65eleq2d 2207 . . . . . 6  |-  ( B  =  (/)  ->  ( A  e.  U. B  <->  A  e.  U. (/) ) )
74, 6mtbiri 664 . . . . 5  |-  ( B  =  (/)  ->  -.  A  e.  U. B )
87pm2.21d 608 . . . 4  |-  ( B  =  (/)  ->  ( A  e.  U. B  ->  suc  A  e.  B ) )
98adantl 275 . . 3  |-  ( ( B  e.  om  /\  B  =  (/) )  -> 
( A  e.  U. B  ->  suc  A  e.  B ) )
10 unieq 3740 . . . . . . . . . . . 12  |-  ( B  =  suc  n  ->  U. B  =  U. suc  n )
1110eleq2d 2207 . . . . . . . . . . 11  |-  ( B  =  suc  n  -> 
( A  e.  U. B 
<->  A  e.  U. suc  n ) )
1211ad2antll 482 . . . . . . . . . 10  |-  ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  ->  ( A  e.  U. B  <->  A  e.  U.
suc  n ) )
1312biimpa 294 . . . . . . . . 9  |-  ( ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  /\  A  e.  U. B )  ->  A  e.  U. suc  n
)
14 simplrl 524 . . . . . . . . . . 11  |-  ( ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  /\  A  e.  U. B )  ->  n  e.  om )
15 nnord 4520 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  Ord  n )
16 ordtr 4295 . . . . . . . . . . . . 13  |-  ( Ord  n  ->  Tr  n
)
1715, 16syl 14 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  Tr  n )
18 vex 2684 . . . . . . . . . . . . 13  |-  n  e. 
_V
1918unisuc 4330 . . . . . . . . . . . 12  |-  ( Tr  n  <->  U. suc  n  =  n )
2017, 19sylib 121 . . . . . . . . . . 11  |-  ( n  e.  om  ->  U. suc  n  =  n )
2114, 20syl 14 . . . . . . . . . 10  |-  ( ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  /\  A  e.  U. B )  ->  U. suc  n  =  n )
2221eleq2d 2207 . . . . . . . . 9  |-  ( ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  /\  A  e.  U. B )  -> 
( A  e.  U. suc  n  <->  A  e.  n
) )
2313, 22mpbid 146 . . . . . . . 8  |-  ( ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  /\  A  e.  U. B )  ->  A  e.  n )
24 nnsucelsuc 6380 . . . . . . . . 9  |-  ( n  e.  om  ->  ( A  e.  n  <->  suc  A  e. 
suc  n ) )
2514, 24syl 14 . . . . . . . 8  |-  ( ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  /\  A  e.  U. B )  -> 
( A  e.  n  <->  suc 
A  e.  suc  n
) )
2623, 25mpbid 146 . . . . . . 7  |-  ( ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  /\  A  e.  U. B )  ->  suc  A  e.  suc  n
)
27 simplrr 525 . . . . . . 7  |-  ( ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  /\  A  e.  U. B )  ->  B  =  suc  n )
2826, 27eleqtrrd 2217 . . . . . 6  |-  ( ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  /\  A  e.  U. B )  ->  suc  A  e.  B )
2928ex 114 . . . . 5  |-  ( ( B  e.  om  /\  ( n  e.  om  /\  B  =  suc  n
) )  ->  ( A  e.  U. B  ->  suc  A  e.  B ) )
3029rexlimdvaa 2548 . . . 4  |-  ( B  e.  om  ->  ( E. n  e.  om  B  =  suc  n  -> 
( A  e.  U. B  ->  suc  A  e.  B ) ) )
3130imp 123 . . 3  |-  ( ( B  e.  om  /\  E. n  e.  om  B  =  suc  n )  -> 
( A  e.  U. B  ->  suc  A  e.  B ) )
32 nn0suc 4513 . . 3  |-  ( B  e.  om  ->  ( B  =  (/)  \/  E. n  e.  om  B  =  suc  n ) )
339, 31, 32mpjaodan 787 . 2  |-  ( B  e.  om  ->  ( A  e.  U. B  ->  suc  A  e.  B ) )
34 sucunielr 4421 . 2  |-  ( suc 
A  e.  B  ->  A  e.  U. B )
3533, 34impbid1 141 1  |-  ( B  e.  om  ->  ( A  e.  U. B  <->  suc  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415   (/)c0 3358   U.cuni 3731   Tr wtr 4021   Ord word 4279   suc csuc 4282   omcom 4499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-int 3767  df-tr 4022  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator