| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucuniel | Unicode version | ||
| Description: Given an element |
| Ref | Expression |
|---|---|
| nnsucuniel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3464 |
. . . . . . 7
| |
| 2 | uni0 3877 |
. . . . . . . 8
| |
| 3 | 2 | eleq2i 2272 |
. . . . . . 7
|
| 4 | 1, 3 | mtbir 673 |
. . . . . 6
|
| 5 | unieq 3859 |
. . . . . . 7
| |
| 6 | 5 | eleq2d 2275 |
. . . . . 6
|
| 7 | 4, 6 | mtbiri 677 |
. . . . 5
|
| 8 | 7 | pm2.21d 620 |
. . . 4
|
| 9 | 8 | adantl 277 |
. . 3
|
| 10 | unieq 3859 |
. . . . . . . . . . . 12
| |
| 11 | 10 | eleq2d 2275 |
. . . . . . . . . . 11
|
| 12 | 11 | ad2antll 491 |
. . . . . . . . . 10
|
| 13 | 12 | biimpa 296 |
. . . . . . . . 9
|
| 14 | simplrl 535 |
. . . . . . . . . . 11
| |
| 15 | nnord 4660 |
. . . . . . . . . . . . 13
| |
| 16 | ordtr 4425 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . . 12
|
| 18 | vex 2775 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | unisuc 4460 |
. . . . . . . . . . . 12
|
| 20 | 17, 19 | sylib 122 |
. . . . . . . . . . 11
|
| 21 | 14, 20 | syl 14 |
. . . . . . . . . 10
|
| 22 | 21 | eleq2d 2275 |
. . . . . . . . 9
|
| 23 | 13, 22 | mpbid 147 |
. . . . . . . 8
|
| 24 | nnsucelsuc 6577 |
. . . . . . . . 9
| |
| 25 | 14, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 23, 25 | mpbid 147 |
. . . . . . 7
|
| 27 | simplrr 536 |
. . . . . . 7
| |
| 28 | 26, 27 | eleqtrrd 2285 |
. . . . . 6
|
| 29 | 28 | ex 115 |
. . . . 5
|
| 30 | 29 | rexlimdvaa 2624 |
. . . 4
|
| 31 | 30 | imp 124 |
. . 3
|
| 32 | nn0suc 4652 |
. . 3
| |
| 33 | 9, 31, 32 | mpjaodan 800 |
. 2
|
| 34 | sucunielr 4558 |
. 2
| |
| 35 | 33, 34 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |