| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucuniel | Unicode version | ||
| Description: Given an element |
| Ref | Expression |
|---|---|
| nnsucuniel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3455 |
. . . . . . 7
| |
| 2 | uni0 3867 |
. . . . . . . 8
| |
| 3 | 2 | eleq2i 2263 |
. . . . . . 7
|
| 4 | 1, 3 | mtbir 672 |
. . . . . 6
|
| 5 | unieq 3849 |
. . . . . . 7
| |
| 6 | 5 | eleq2d 2266 |
. . . . . 6
|
| 7 | 4, 6 | mtbiri 676 |
. . . . 5
|
| 8 | 7 | pm2.21d 620 |
. . . 4
|
| 9 | 8 | adantl 277 |
. . 3
|
| 10 | unieq 3849 |
. . . . . . . . . . . 12
| |
| 11 | 10 | eleq2d 2266 |
. . . . . . . . . . 11
|
| 12 | 11 | ad2antll 491 |
. . . . . . . . . 10
|
| 13 | 12 | biimpa 296 |
. . . . . . . . 9
|
| 14 | simplrl 535 |
. . . . . . . . . . 11
| |
| 15 | nnord 4649 |
. . . . . . . . . . . . 13
| |
| 16 | ordtr 4414 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . . 12
|
| 18 | vex 2766 |
. . . . . . . . . . . . 13
| |
| 19 | 18 | unisuc 4449 |
. . . . . . . . . . . 12
|
| 20 | 17, 19 | sylib 122 |
. . . . . . . . . . 11
|
| 21 | 14, 20 | syl 14 |
. . . . . . . . . 10
|
| 22 | 21 | eleq2d 2266 |
. . . . . . . . 9
|
| 23 | 13, 22 | mpbid 147 |
. . . . . . . 8
|
| 24 | nnsucelsuc 6558 |
. . . . . . . . 9
| |
| 25 | 14, 24 | syl 14 |
. . . . . . . 8
|
| 26 | 23, 25 | mpbid 147 |
. . . . . . 7
|
| 27 | simplrr 536 |
. . . . . . 7
| |
| 28 | 26, 27 | eleqtrrd 2276 |
. . . . . 6
|
| 29 | 28 | ex 115 |
. . . . 5
|
| 30 | 29 | rexlimdvaa 2615 |
. . . 4
|
| 31 | 30 | imp 124 |
. . 3
|
| 32 | nn0suc 4641 |
. . 3
| |
| 33 | 9, 31, 32 | mpjaodan 799 |
. 2
|
| 34 | sucunielr 4547 |
. 2
| |
| 35 | 33, 34 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |