Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsucuniel | Unicode version |
Description: Given an element of the union of a natural number , is an element of itself. The reverse direction holds for all ordinals (sucunielr 4470). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4491). (Contributed by Jim Kingdon, 13-Mar-2022.) |
Ref | Expression |
---|---|
nnsucuniel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3398 | . . . . . . 7 | |
2 | uni0 3800 | . . . . . . . 8 | |
3 | 2 | eleq2i 2224 | . . . . . . 7 |
4 | 1, 3 | mtbir 661 | . . . . . 6 |
5 | unieq 3782 | . . . . . . 7 | |
6 | 5 | eleq2d 2227 | . . . . . 6 |
7 | 4, 6 | mtbiri 665 | . . . . 5 |
8 | 7 | pm2.21d 609 | . . . 4 |
9 | 8 | adantl 275 | . . 3 |
10 | unieq 3782 | . . . . . . . . . . . 12 | |
11 | 10 | eleq2d 2227 | . . . . . . . . . . 11 |
12 | 11 | ad2antll 483 | . . . . . . . . . 10 |
13 | 12 | biimpa 294 | . . . . . . . . 9 |
14 | simplrl 525 | . . . . . . . . . . 11 | |
15 | nnord 4572 | . . . . . . . . . . . . 13 | |
16 | ordtr 4339 | . . . . . . . . . . . . 13 | |
17 | 15, 16 | syl 14 | . . . . . . . . . . . 12 |
18 | vex 2715 | . . . . . . . . . . . . 13 | |
19 | 18 | unisuc 4374 | . . . . . . . . . . . 12 |
20 | 17, 19 | sylib 121 | . . . . . . . . . . 11 |
21 | 14, 20 | syl 14 | . . . . . . . . . 10 |
22 | 21 | eleq2d 2227 | . . . . . . . . 9 |
23 | 13, 22 | mpbid 146 | . . . . . . . 8 |
24 | nnsucelsuc 6439 | . . . . . . . . 9 | |
25 | 14, 24 | syl 14 | . . . . . . . 8 |
26 | 23, 25 | mpbid 146 | . . . . . . 7 |
27 | simplrr 526 | . . . . . . 7 | |
28 | 26, 27 | eleqtrrd 2237 | . . . . . 6 |
29 | 28 | ex 114 | . . . . 5 |
30 | 29 | rexlimdvaa 2575 | . . . 4 |
31 | 30 | imp 123 | . . 3 |
32 | nn0suc 4564 | . . 3 | |
33 | 9, 31, 32 | mpjaodan 788 | . 2 |
34 | sucunielr 4470 | . 2 | |
35 | 33, 34 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wrex 2436 c0 3394 cuni 3773 wtr 4063 word 4323 csuc 4326 com 4550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-iinf 4548 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3774 df-int 3809 df-tr 4064 df-iord 4327 df-on 4329 df-suc 4332 df-iom 4551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |