ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllembex Unicode version

Theorem tfrcllembex 6058
Description: Lemma for tfrcl 6064. The set  B exists. (Contributed by Jim Kingdon, 25-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f  |-  F  = recs ( G )
tfrcl.g  |-  ( ph  ->  Fun  G )
tfrcl.x  |-  ( ph  ->  Ord  X )
tfrcl.ex  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
tfrcllemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfrcllembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) ) }
tfrcllembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfrcllembacc.4  |-  ( ph  ->  D  e.  X )
tfrcllembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
g `  w )  =  ( G `  ( g  |`  w
) ) ) )
Assertion
Ref Expression
tfrcllembex  |-  ( ph  ->  B  e.  _V )
Distinct variable groups:    A, f, g, h, x, y, z    D, f, g, x, y   
f, G, x, y    S, f, x, y    f, X, x    ph, f, g, h, x, y, z    B, g, h, z    w, B, g, z    D, h, z    h, G, z   
w, G, y    S, g, h, z    z, X
Allowed substitution hints:    ph( w)    A( w)    B( x, y, f)    D( w)    S( w)    F( x, y, z, w, f, g, h)    G( g)    X( y, w, g, h)

Proof of Theorem tfrcllembex
StepHypRef Expression
1 tfrcl.f . . . 4  |-  F  = recs ( G )
2 tfrcl.g . . . 4  |-  ( ph  ->  Fun  G )
3 tfrcl.x . . . 4  |-  ( ph  ->  Ord  X )
4 tfrcl.ex . . . 4  |-  ( (
ph  /\  x  e.  X  /\  f : x --> S )  ->  ( G `  f )  e.  S )
5 tfrcllemsucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
6 tfrcllembacc.3 . . . 4  |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) ) }
7 tfrcllembacc.u . . . 4  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfrcllembacc.4 . . . 4  |-  ( ph  ->  D  e.  X )
9 tfrcllembacc.5 . . . 4  |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
g `  w )  =  ( G `  ( g  |`  w
) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9tfrcllembfn 6057 . . 3  |-  ( ph  ->  U. B : D --> S )
11 fex 5467 . . 3  |-  ( ( U. B : D --> S  /\  D  e.  X
)  ->  U. B  e. 
_V )
1210, 8, 11syl2anc 403 . 2  |-  ( ph  ->  U. B  e.  _V )
13 uniexb 4262 . 2  |-  ( B  e.  _V  <->  U. B  e. 
_V )
1412, 13sylibr 132 1  |-  ( ph  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 922    = wceq 1287   E.wex 1424    e. wcel 1436   {cab 2071   A.wral 2355   E.wrex 2356   _Vcvv 2614    u. cun 2984   {csn 3425   <.cop 3428   U.cuni 3630   Ord word 4156   suc csuc 4159    |` cres 4406   Fun wfun 4966   -->wf 4968   ` cfv 4972  recscrecs 6004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3922  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-tr 3905  df-id 4087  df-iord 4160  df-on 4162  df-suc 4165  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-f1 4977  df-fo 4978  df-f1o 4979  df-fv 4980  df-recs 6005
This theorem is referenced by:  tfrcllemex  6060
  Copyright terms: Public domain W3C validator