ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpexgg Unicode version

Theorem ixpexgg 6688
Description: The existence of an infinite Cartesian product.  x is normally a free-variable parameter in 
B. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpexgg  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  X_ x  e.  A  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)    W( x)

Proof of Theorem ixpexgg
StepHypRef Expression
1 uniixp 6687 . . 3  |-  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
2 iunexg 6087 . . . 4  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  U_ x  e.  A  B  e.  _V )
3 xpexg 4718 . . . 4  |-  ( ( A  e.  W  /\  U_ x  e.  A  B  e.  _V )  ->  ( A  X.  U_ x  e.  A  B )  e. 
_V )
42, 3syldan 280 . . 3  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  ( A  X.  U_ x  e.  A  B )  e. 
_V )
5 ssexg 4121 . . 3  |-  ( ( U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B
)  /\  ( A  X.  U_ x  e.  A  B )  e.  _V )  ->  U. X_ x  e.  A  B  e.  _V )
61, 4, 5sylancr 411 . 2  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  U. X_ x  e.  A  B  e.  _V )
7 uniexb 4451 . 2  |-  ( X_ x  e.  A  B  e.  _V  <->  U. X_ x  e.  A  B  e.  _V )
86, 7sylibr 133 1  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  X_ x  e.  A  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   A.wral 2444   _Vcvv 2726    C_ wss 3116   U.cuni 3789   U_ciun 3866    X. cxp 4602   X_cixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ixp 6665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator