ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpexgg Unicode version

Theorem ixpexgg 6700
Description: The existence of an infinite Cartesian product.  x is normally a free-variable parameter in 
B. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpexgg  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  X_ x  e.  A  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)    W( x)

Proof of Theorem ixpexgg
StepHypRef Expression
1 uniixp 6699 . . 3  |-  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
2 iunexg 6098 . . . 4  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  U_ x  e.  A  B  e.  _V )
3 xpexg 4725 . . . 4  |-  ( ( A  e.  W  /\  U_ x  e.  A  B  e.  _V )  ->  ( A  X.  U_ x  e.  A  B )  e. 
_V )
42, 3syldan 280 . . 3  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  ( A  X.  U_ x  e.  A  B )  e. 
_V )
5 ssexg 4128 . . 3  |-  ( ( U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B
)  /\  ( A  X.  U_ x  e.  A  B )  e.  _V )  ->  U. X_ x  e.  A  B  e.  _V )
61, 4, 5sylancr 412 . 2  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  U. X_ x  e.  A  B  e.  _V )
7 uniexb 4458 . 2  |-  ( X_ x  e.  A  B  e.  _V  <->  U. X_ x  e.  A  B  e.  _V )
86, 7sylibr 133 1  |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  X_ x  e.  A  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   A.wral 2448   _Vcvv 2730    C_ wss 3121   U.cuni 3796   U_ciun 3873    X. cxp 4609   X_cixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ixp 6677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator