ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txbasex Unicode version

Theorem txbasex 12617
Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
txval.1  |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )
Assertion
Ref Expression
txbasex  |-  ( ( R  e.  V  /\  S  e.  W )  ->  B  e.  _V )
Distinct variable groups:    x, y, R   
x, S, y
Allowed substitution hints:    B( x, y)    V( x, y)    W( x, y)

Proof of Theorem txbasex
StepHypRef Expression
1 txval.1 . . . 4  |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )
2 eqid 2157 . . . 4  |-  U. R  =  U. R
3 eqid 2157 . . . 4  |-  U. S  =  U. S
41, 2, 3txuni2 12616 . . 3  |-  ( U. R  X.  U. S )  =  U. B
5 uniexg 4398 . . . 4  |-  ( R  e.  V  ->  U. R  e.  _V )
6 uniexg 4398 . . . 4  |-  ( S  e.  W  ->  U. S  e.  _V )
7 xpexg 4697 . . . 4  |-  ( ( U. R  e.  _V  /\ 
U. S  e.  _V )  ->  ( U. R  X.  U. S )  e. 
_V )
85, 6, 7syl2an 287 . . 3  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( U. R  X.  U. S )  e.  _V )
94, 8eqeltrrid 2245 . 2  |-  ( ( R  e.  V  /\  S  e.  W )  ->  U. B  e.  _V )
10 uniexb 4431 . 2  |-  ( B  e.  _V  <->  U. B  e. 
_V )
119, 10sylibr 133 1  |-  ( ( R  e.  V  /\  S  e.  W )  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712   U.cuni 3772    X. cxp 4581   ran crn 4584    e. cmpo 5820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083
This theorem is referenced by:  txbas  12618  eltx  12619  txtopon  12622  txopn  12625  txss12  12626  txbasval  12627  txrest  12636
  Copyright terms: Public domain W3C validator