Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en1bg | Unicode version |
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.) |
Ref | Expression |
---|---|
en1bg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 6737 | . . 3 | |
2 | id 19 | . . . . 5 | |
3 | unieq 3781 | . . . . . . 7 | |
4 | vex 2715 | . . . . . . . 8 | |
5 | 4 | unisn 3788 | . . . . . . 7 |
6 | 3, 5 | eqtrdi 2206 | . . . . . 6 |
7 | 6 | sneqd 3573 | . . . . 5 |
8 | 2, 7 | eqtr4d 2193 | . . . 4 |
9 | 8 | exlimiv 1578 | . . 3 |
10 | 1, 9 | sylbi 120 | . 2 |
11 | uniexg 4398 | . . . 4 | |
12 | ensn1g 6735 | . . . 4 | |
13 | 11, 12 | syl 14 | . . 3 |
14 | breq1 3968 | . . 3 | |
15 | 13, 14 | syl5ibrcom 156 | . 2 |
16 | 10, 15 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wex 1472 wcel 2128 cvv 2712 csn 3560 cuni 3772 class class class wbr 3965 c1o 6350 cen 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1o 6357 df-en 6679 |
This theorem is referenced by: en1uniel 6742 |
Copyright terms: Public domain | W3C validator |