ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1bg Unicode version

Theorem en1bg 6915
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
en1bg  |-  ( A  e.  V  ->  ( A  ~~  1o  <->  A  =  { U. A } ) )

Proof of Theorem en1bg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 en1 6914 . . 3  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
2 id 19 . . . . 5  |-  ( A  =  { x }  ->  A  =  { x } )
3 unieq 3873 . . . . . . 7  |-  ( A  =  { x }  ->  U. A  =  U. { x } )
4 vex 2779 . . . . . . . 8  |-  x  e. 
_V
54unisn 3880 . . . . . . 7  |-  U. {
x }  =  x
63, 5eqtrdi 2256 . . . . . 6  |-  ( A  =  { x }  ->  U. A  =  x )
76sneqd 3656 . . . . 5  |-  ( A  =  { x }  ->  { U. A }  =  { x } )
82, 7eqtr4d 2243 . . . 4  |-  ( A  =  { x }  ->  A  =  { U. A } )
98exlimiv 1622 . . 3  |-  ( E. x  A  =  {
x }  ->  A  =  { U. A }
)
101, 9sylbi 121 . 2  |-  ( A 
~~  1o  ->  A  =  { U. A }
)
11 uniexg 4504 . . . 4  |-  ( A  e.  V  ->  U. A  e.  _V )
12 ensn1g 6912 . . . 4  |-  ( U. A  e.  _V  ->  { U. A }  ~~  1o )
1311, 12syl 14 . . 3  |-  ( A  e.  V  ->  { U. A }  ~~  1o )
14 breq1 4062 . . 3  |-  ( A  =  { U. A }  ->  ( A  ~~  1o 
<->  { U. A }  ~~  1o ) )
1513, 14syl5ibrcom 157 . 2  |-  ( A  e.  V  ->  ( A  =  { U. A }  ->  A  ~~  1o ) )
1610, 15impbid2 143 1  |-  ( A  e.  V  ->  ( A  ~~  1o  <->  A  =  { U. A } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776   {csn 3643   U.cuni 3864   class class class wbr 4059   1oc1o 6518    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-en 6851
This theorem is referenced by:  en1uniel  6919
  Copyright terms: Public domain W3C validator