ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1bg Unicode version

Theorem en1bg 6894
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
en1bg  |-  ( A  e.  V  ->  ( A  ~~  1o  <->  A  =  { U. A } ) )

Proof of Theorem en1bg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 en1 6893 . . 3  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
2 id 19 . . . . 5  |-  ( A  =  { x }  ->  A  =  { x } )
3 unieq 3859 . . . . . . 7  |-  ( A  =  { x }  ->  U. A  =  U. { x } )
4 vex 2775 . . . . . . . 8  |-  x  e. 
_V
54unisn 3866 . . . . . . 7  |-  U. {
x }  =  x
63, 5eqtrdi 2254 . . . . . 6  |-  ( A  =  { x }  ->  U. A  =  x )
76sneqd 3646 . . . . 5  |-  ( A  =  { x }  ->  { U. A }  =  { x } )
82, 7eqtr4d 2241 . . . 4  |-  ( A  =  { x }  ->  A  =  { U. A } )
98exlimiv 1621 . . 3  |-  ( E. x  A  =  {
x }  ->  A  =  { U. A }
)
101, 9sylbi 121 . 2  |-  ( A 
~~  1o  ->  A  =  { U. A }
)
11 uniexg 4487 . . . 4  |-  ( A  e.  V  ->  U. A  e.  _V )
12 ensn1g 6891 . . . 4  |-  ( U. A  e.  _V  ->  { U. A }  ~~  1o )
1311, 12syl 14 . . 3  |-  ( A  e.  V  ->  { U. A }  ~~  1o )
14 breq1 4048 . . 3  |-  ( A  =  { U. A }  ->  ( A  ~~  1o 
<->  { U. A }  ~~  1o ) )
1513, 14syl5ibrcom 157 . 2  |-  ( A  e.  V  ->  ( A  =  { U. A }  ->  A  ~~  1o ) )
1610, 15impbid2 143 1  |-  ( A  e.  V  ->  ( A  ~~  1o  <->  A  =  { U. A } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   {csn 3633   U.cuni 3850   class class class wbr 4045   1oc1o 6497    ~~ cen 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1o 6504  df-en 6830
This theorem is referenced by:  en1uniel  6898
  Copyright terms: Public domain W3C validator