ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1bg Unicode version

Theorem en1bg 6738
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
en1bg  |-  ( A  e.  V  ->  ( A  ~~  1o  <->  A  =  { U. A } ) )

Proof of Theorem en1bg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 en1 6737 . . 3  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
2 id 19 . . . . 5  |-  ( A  =  { x }  ->  A  =  { x } )
3 unieq 3781 . . . . . . 7  |-  ( A  =  { x }  ->  U. A  =  U. { x } )
4 vex 2715 . . . . . . . 8  |-  x  e. 
_V
54unisn 3788 . . . . . . 7  |-  U. {
x }  =  x
63, 5eqtrdi 2206 . . . . . 6  |-  ( A  =  { x }  ->  U. A  =  x )
76sneqd 3573 . . . . 5  |-  ( A  =  { x }  ->  { U. A }  =  { x } )
82, 7eqtr4d 2193 . . . 4  |-  ( A  =  { x }  ->  A  =  { U. A } )
98exlimiv 1578 . . 3  |-  ( E. x  A  =  {
x }  ->  A  =  { U. A }
)
101, 9sylbi 120 . 2  |-  ( A 
~~  1o  ->  A  =  { U. A }
)
11 uniexg 4398 . . . 4  |-  ( A  e.  V  ->  U. A  e.  _V )
12 ensn1g 6735 . . . 4  |-  ( U. A  e.  _V  ->  { U. A }  ~~  1o )
1311, 12syl 14 . . 3  |-  ( A  e.  V  ->  { U. A }  ~~  1o )
14 breq1 3968 . . 3  |-  ( A  =  { U. A }  ->  ( A  ~~  1o 
<->  { U. A }  ~~  1o ) )
1513, 14syl5ibrcom 156 . 2  |-  ( A  e.  V  ->  ( A  =  { U. A }  ->  A  ~~  1o ) )
1610, 15impbid2 142 1  |-  ( A  e.  V  ->  ( A  ~~  1o  <->  A  =  { U. A } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335   E.wex 1472    e. wcel 2128   _Vcvv 2712   {csn 3560   U.cuni 3772   class class class wbr 3965   1oc1o 6350    ~~ cen 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-suc 4330  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-1o 6357  df-en 6679
This theorem is referenced by:  en1uniel  6742
  Copyright terms: Public domain W3C validator