Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissd GIF version

Theorem unissd 3755
 Description: Subclass relationship for subclass union. Deduction form of uniss 3752. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
unissd (𝜑 𝐴 𝐵)

Proof of Theorem unissd
StepHypRef Expression
1 unissd.1 . 2 (𝜑𝐴𝐵)
2 uniss 3752 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2syl 14 1 (𝜑 𝐴 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ⊆ wss 3066  ∪ cuni 3731 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-in 3072  df-ss 3079  df-uni 3732 This theorem is referenced by:  iotanul  5098  tfrlemibfn  6218  tfrlemiubacc  6220  tfr1onlemssrecs  6229  tfr1onlembfn  6234  tfr1onlemubacc  6236  tfrcllemssrecs  6242  tfrcllembfn  6247  tfrcllemubacc  6249  fiuni  6859  eltg3i  12214  unitg  12220  tgss  12221  ntrss  12277
 Copyright terms: Public domain W3C validator