ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissd GIF version

Theorem unissd 3818
Description: Subclass relationship for subclass union. Deduction form of uniss 3815. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
unissd (𝜑 𝐴 𝐵)

Proof of Theorem unissd
StepHypRef Expression
1 unissd.1 . 2 (𝜑𝐴𝐵)
2 uniss 3815 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2syl 14 1 (𝜑 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3121   cuni 3794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-uni 3795
This theorem is referenced by:  iotanul  5173  tfrlemibfn  6305  tfrlemiubacc  6307  tfr1onlemssrecs  6316  tfr1onlembfn  6321  tfr1onlemubacc  6323  tfrcllemssrecs  6329  tfrcllembfn  6334  tfrcllemubacc  6336  fiuni  6953  eltg3i  12815  unitg  12821  tgss  12822  ntrss  12878
  Copyright terms: Public domain W3C validator