ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissd GIF version

Theorem unissd 3835
Description: Subclass relationship for subclass union. Deduction form of uniss 3832. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
unissd (𝜑 𝐴 𝐵)

Proof of Theorem unissd
StepHypRef Expression
1 unissd.1 . 2 (𝜑𝐴𝐵)
2 uniss 3832 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2syl 14 1 (𝜑 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3131   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812
This theorem is referenced by:  iotanul  5195  tfrlemibfn  6331  tfrlemiubacc  6333  tfr1onlemssrecs  6342  tfr1onlembfn  6347  tfr1onlemubacc  6349  tfrcllemssrecs  6355  tfrcllembfn  6360  tfrcllemubacc  6362  fiuni  6979  eltg3i  13641  unitg  13647  tgss  13648  ntrss  13704
  Copyright terms: Public domain W3C validator