![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unissd | GIF version |
Description: Subclass relationship for subclass union. Deduction form of uniss 3845. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | uniss 3845 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3144 ∪ cuni 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-in 3150 df-ss 3157 df-uni 3825 |
This theorem is referenced by: iotanul 5211 tfrlemibfn 6353 tfrlemiubacc 6355 tfr1onlemssrecs 6364 tfr1onlembfn 6369 tfr1onlemubacc 6371 tfrcllemssrecs 6377 tfrcllembfn 6382 tfrcllemubacc 6384 fiuni 7007 eltg3i 14016 unitg 14022 tgss 14023 ntrss 14079 |
Copyright terms: Public domain | W3C validator |