Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unissd | GIF version |
Description: Subclass relationship for subclass union. Deduction form of uniss 3815. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | uniss 3815 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3121 ∪ cuni 3794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-uni 3795 |
This theorem is referenced by: iotanul 5173 tfrlemibfn 6305 tfrlemiubacc 6307 tfr1onlemssrecs 6316 tfr1onlembfn 6321 tfr1onlemubacc 6323 tfrcllemssrecs 6329 tfrcllembfn 6334 tfrcllemubacc 6336 fiuni 6953 eltg3i 12815 unitg 12821 tgss 12822 ntrss 12878 |
Copyright terms: Public domain | W3C validator |