| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unissd | GIF version | ||
| Description: Subclass relationship for subclass union. Deduction form of uniss 3908. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| unissd | ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | uniss 3908 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 |
| This theorem is referenced by: iotanul 5293 tfrlemibfn 6472 tfrlemiubacc 6474 tfr1onlemssrecs 6483 tfr1onlembfn 6488 tfr1onlemubacc 6490 tfrcllemssrecs 6496 tfrcllembfn 6501 tfrcllemubacc 6503 fiuni 7141 eltg3i 14724 unitg 14730 tgss 14731 ntrss 14787 |
| Copyright terms: Public domain | W3C validator |