ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissd GIF version

Theorem unissd 3859
Description: Subclass relationship for subclass union. Deduction form of uniss 3856. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
unissd (𝜑 𝐴 𝐵)

Proof of Theorem unissd
StepHypRef Expression
1 unissd.1 . 2 (𝜑𝐴𝐵)
2 uniss 3856 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2syl 14 1 (𝜑 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3153   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836
This theorem is referenced by:  iotanul  5230  tfrlemibfn  6381  tfrlemiubacc  6383  tfr1onlemssrecs  6392  tfr1onlembfn  6397  tfr1onlemubacc  6399  tfrcllemssrecs  6405  tfrcllembfn  6410  tfrcllemubacc  6412  fiuni  7037  eltg3i  14224  unitg  14230  tgss  14231  ntrss  14287
  Copyright terms: Public domain W3C validator