ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissd GIF version

Theorem unissd 3911
Description: Subclass relationship for subclass union. Deduction form of uniss 3908. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
unissd (𝜑 𝐴 𝐵)

Proof of Theorem unissd
StepHypRef Expression
1 unissd.1 . 2 (𝜑𝐴𝐵)
2 uniss 3908 . 2 (𝐴𝐵 𝐴 𝐵)
31, 2syl 14 1 (𝜑 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3197   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888
This theorem is referenced by:  iotanul  5293  tfrlemibfn  6472  tfrlemiubacc  6474  tfr1onlemssrecs  6483  tfr1onlembfn  6488  tfr1onlemubacc  6490  tfrcllemssrecs  6496  tfrcllembfn  6501  tfrcllemubacc  6503  fiuni  7141  eltg3i  14724  unitg  14730  tgss  14731  ntrss  14787
  Copyright terms: Public domain W3C validator