ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitg Unicode version

Theorem unitg 14382
Description: The topology generated by a basis  B is a topology on  U. B. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class  TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
Assertion
Ref Expression
unitg  |-  ( B  e.  V  ->  U. ( topGen `
 B )  = 
U. B )

Proof of Theorem unitg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tg1 14379 . . . . . 6  |-  ( x  e.  ( topGen `  B
)  ->  x  C_  U. B
)
2 velpw 3613 . . . . . 6  |-  ( x  e.  ~P U. B  <->  x 
C_  U. B )
31, 2sylibr 134 . . . . 5  |-  ( x  e.  ( topGen `  B
)  ->  x  e.  ~P U. B )
43ssriv 3188 . . . 4  |-  ( topGen `  B )  C_  ~P U. B
5 sspwuni 4002 . . . 4  |-  ( (
topGen `  B )  C_  ~P U. B  <->  U. ( topGen `
 B )  C_  U. B )
64, 5mpbi 145 . . 3  |-  U. ( topGen `
 B )  C_  U. B
76a1i 9 . 2  |-  ( B  e.  V  ->  U. ( topGen `
 B )  C_  U. B )
8 bastg 14381 . . 3  |-  ( B  e.  V  ->  B  C_  ( topGen `  B )
)
98unissd 3864 . 2  |-  ( B  e.  V  ->  U. B  C_ 
U. ( topGen `  B
) )
107, 9eqssd 3201 1  |-  ( B  e.  V  ->  U. ( topGen `
 B )  = 
U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    C_ wss 3157   ~Pcpw 3606   U.cuni 3840   ` cfv 5259   topGenctg 12956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-topgen 12962
This theorem is referenced by:  tgcl  14384  tgtopon  14386  txtopon  14582  uniretop  14845
  Copyright terms: Public domain W3C validator