ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitg Unicode version

Theorem unitg 12712
Description: The topology generated by a basis  B is a topology on  U. B. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class  TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
Assertion
Ref Expression
unitg  |-  ( B  e.  V  ->  U. ( topGen `
 B )  = 
U. B )

Proof of Theorem unitg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tg1 12709 . . . . . 6  |-  ( x  e.  ( topGen `  B
)  ->  x  C_  U. B
)
2 velpw 3566 . . . . . 6  |-  ( x  e.  ~P U. B  <->  x 
C_  U. B )
31, 2sylibr 133 . . . . 5  |-  ( x  e.  ( topGen `  B
)  ->  x  e.  ~P U. B )
43ssriv 3146 . . . 4  |-  ( topGen `  B )  C_  ~P U. B
5 sspwuni 3950 . . . 4  |-  ( (
topGen `  B )  C_  ~P U. B  <->  U. ( topGen `
 B )  C_  U. B )
64, 5mpbi 144 . . 3  |-  U. ( topGen `
 B )  C_  U. B
76a1i 9 . 2  |-  ( B  e.  V  ->  U. ( topGen `
 B )  C_  U. B )
8 bastg 12711 . . 3  |-  ( B  e.  V  ->  B  C_  ( topGen `  B )
)
98unissd 3813 . 2  |-  ( B  e.  V  ->  U. B  C_ 
U. ( topGen `  B
) )
107, 9eqssd 3159 1  |-  ( B  e.  V  ->  U. ( topGen `
 B )  = 
U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    C_ wss 3116   ~Pcpw 3559   U.cuni 3789   ` cfv 5188   topGenctg 12571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-topgen 12577
This theorem is referenced by:  tgcl  12714  tgtopon  12716  txtopon  12912  uniretop  13175
  Copyright terms: Public domain W3C validator