Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unitg | Unicode version |
Description: The topology generated by a basis is a topology on . Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
Ref | Expression |
---|---|
unitg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tg1 12853 | . . . . . 6 | |
2 | velpw 3573 | . . . . . 6 | |
3 | 1, 2 | sylibr 133 | . . . . 5 |
4 | 3 | ssriv 3151 | . . . 4 |
5 | sspwuni 3957 | . . . 4 | |
6 | 4, 5 | mpbi 144 | . . 3 |
7 | 6 | a1i 9 | . 2 |
8 | bastg 12855 | . . 3 | |
9 | 8 | unissd 3820 | . 2 |
10 | 7, 9 | eqssd 3164 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 wss 3121 cpw 3566 cuni 3796 cfv 5198 ctg 12594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-topgen 12600 |
This theorem is referenced by: tgcl 12858 tgtopon 12860 txtopon 13056 uniretop 13319 |
Copyright terms: Public domain | W3C validator |