Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrcllemubacc | Unicode version |
Description: Lemma for tfrcl 6340. The union of satisfies the recursion rule. (Contributed by Jim Kingdon, 25-Mar-2022.) |
Ref | Expression |
---|---|
tfrcl.f | recs |
tfrcl.g | |
tfrcl.x | |
tfrcl.ex | |
tfrcllemsucfn.1 | |
tfrcllembacc.3 | |
tfrcllembacc.u | |
tfrcllembacc.4 | |
tfrcllembacc.5 |
Ref | Expression |
---|---|
tfrcllemubacc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrcl.f | . . . . . . . . 9 recs | |
2 | tfrcl.g | . . . . . . . . 9 | |
3 | tfrcl.x | . . . . . . . . 9 | |
4 | tfrcl.ex | . . . . . . . . 9 | |
5 | tfrcllemsucfn.1 | . . . . . . . . 9 | |
6 | tfrcllembacc.3 | . . . . . . . . 9 | |
7 | tfrcllembacc.u | . . . . . . . . 9 | |
8 | tfrcllembacc.4 | . . . . . . . . 9 | |
9 | tfrcllembacc.5 | . . . . . . . . 9 | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembfn 6333 | . . . . . . . 8 |
11 | fdm 5351 | . . . . . . . 8 | |
12 | 10, 11 | syl 14 | . . . . . . 7 |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | tfrcllembacc 6331 | . . . . . . . . . 10 |
14 | 13 | unissd 3818 | . . . . . . . . 9 |
15 | 5, 3 | tfrcllemssrecs 6328 | . . . . . . . . 9 recs |
16 | 14, 15 | sstrd 3157 | . . . . . . . 8 recs |
17 | dmss 4808 | . . . . . . . 8 recs recs | |
18 | 16, 17 | syl 14 | . . . . . . 7 recs |
19 | 12, 18 | eqsstrrd 3184 | . . . . . 6 recs |
20 | 19 | sselda 3147 | . . . . 5 recs |
21 | eqid 2170 | . . . . . 6 | |
22 | 21 | tfrlem9 6295 | . . . . 5 recs recs recs |
23 | 20, 22 | syl 14 | . . . 4 recs recs |
24 | tfrfun 6296 | . . . . 5 recs | |
25 | 12 | eleq2d 2240 | . . . . . 6 |
26 | 25 | biimpar 295 | . . . . 5 |
27 | funssfv 5520 | . . . . 5 recs recs recs | |
28 | 24, 16, 26, 27 | mp3an2ani 1339 | . . . 4 recs |
29 | ordelon 4366 | . . . . . . . . . 10 | |
30 | 3, 8, 29 | syl2anc 409 | . . . . . . . . 9 |
31 | eloni 4358 | . . . . . . . . 9 | |
32 | 30, 31 | syl 14 | . . . . . . . 8 |
33 | ordelss 4362 | . . . . . . . 8 | |
34 | 32, 33 | sylan 281 | . . . . . . 7 |
35 | 12 | adantr 274 | . . . . . . 7 |
36 | 34, 35 | sseqtrrd 3186 | . . . . . 6 |
37 | fun2ssres 5239 | . . . . . 6 recs recs recs | |
38 | 24, 16, 36, 37 | mp3an2ani 1339 | . . . . 5 recs |
39 | 38 | fveq2d 5498 | . . . 4 recs |
40 | 23, 28, 39 | 3eqtr3d 2211 | . . 3 |
41 | 40 | ralrimiva 2543 | . 2 |
42 | fveq2 5494 | . . . 4 | |
43 | reseq2 4884 | . . . . 5 | |
44 | 43 | fveq2d 5498 | . . . 4 |
45 | 42, 44 | eqeq12d 2185 | . . 3 |
46 | 45 | cbvralv 2696 | . 2 |
47 | 41, 46 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wex 1485 wcel 2141 cab 2156 wral 2448 wrex 2449 cun 3119 wss 3121 csn 3581 cop 3584 cuni 3794 word 4345 con0 4346 csuc 4348 cdm 4609 cres 4611 wfun 5190 wfn 5191 wf 5192 cfv 5196 recscrecs 6280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-recs 6281 |
This theorem is referenced by: tfrcllemex 6336 |
Copyright terms: Public domain | W3C validator |