ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wlkop Unicode version

Theorem wlkop 16059
Description: A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.)
Assertion
Ref Expression
wlkop  |-  ( W  e.  (Walks `  G
)  ->  W  =  <. ( 1st `  W
) ,  ( 2nd `  W ) >. )

Proof of Theorem wlkop
StepHypRef Expression
1 relwlk 16058 . 2  |-  Rel  (Walks `  G )
2 1st2nd 6327 . 2  |-  ( ( Rel  (Walks `  G
)  /\  W  e.  (Walks `  G ) )  ->  W  =  <. ( 1st `  W ) ,  ( 2nd `  W
) >. )
31, 2mpan 424 1  |-  ( W  e.  (Walks `  G
)  ->  W  =  <. ( 1st `  W
) ,  ( 2nd `  W ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   <.cop 3669   Rel wrel 4724   ` cfv 5318   1stc1st 6284   2ndc2nd 6285  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fv 5326  df-1st 6286  df-2nd 6287  df-wlks 16031
This theorem is referenced by:  wlkelvv  16060  wlkcprim  16061
  Copyright terms: Public domain W3C validator