ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0letri Unicode version

Theorem xnn0letri 9999
Description: Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
Assertion
Ref Expression
xnn0letri  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( A  <_  B  \/  B  <_  A ) )

Proof of Theorem xnn0letri
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  A  e.  NN0 )
21nn0zd 9567 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  A  e.  ZZ )
3 simplr 528 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  B  e.  NN0 )
43nn0zd 9567 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  B  e.  ZZ )
5 zletric 9490 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  \/  B  <_  A ) )
62, 4, 5syl2anc 411 . . 3  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  -> 
( A  <_  B  \/  B  <_  A ) )
7 xnn0xr 9437 . . . . . . 7  |-  ( B  e. NN0*  ->  B  e.  RR* )
8 pnfge 9985 . . . . . . 7  |-  ( B  e.  RR*  ->  B  <_ +oo )
97, 8syl 14 . . . . . 6  |-  ( B  e. NN0*  ->  B  <_ +oo )
109ad3antlr 493 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  <_ +oo )
11 simpr 110 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  A  = +oo )
1210, 11breqtrrd 4111 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  <_  A )
1312olcd 739 . . 3  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( A  <_  B  \/  B  <_  A ) )
14 elxnn0 9434 . . . . 5  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
1514biimpi 120 . . . 4  |-  ( A  e. NN0*  ->  ( A  e. 
NN0  \/  A  = +oo ) )
1615ad2antrr 488 . . 3  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  ->  ( A  e.  NN0  \/  A  = +oo ) )
176, 13, 16mpjaodan 803 . 2  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  ->  ( A  <_  B  \/  B  <_  A ) )
18 xnn0xr 9437 . . . . . 6  |-  ( A  e. NN0*  ->  A  e.  RR* )
1918ad2antrr 488 . . . . 5  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  e.  RR* )
20 pnfge 9985 . . . . 5  |-  ( A  e.  RR*  ->  A  <_ +oo )
2119, 20syl 14 . . . 4  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  <_ +oo )
22 simpr 110 . . . 4  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  B  = +oo )
2321, 22breqtrrd 4111 . . 3  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  <_  B )
2423orcd 738 . 2  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  ( A  <_  B  \/  B  <_  A ) )
25 elxnn0 9434 . . . 4  |-  ( B  e. NN0* 
<->  ( B  e.  NN0  \/  B  = +oo )
)
2625biimpi 120 . . 3  |-  ( B  e. NN0*  ->  ( B  e. 
NN0  \/  B  = +oo ) )
2726adantl 277 . 2  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( B  e.  NN0  \/  B  = +oo ) )
2817, 24, 27mpjaodan 803 1  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( A  <_  B  \/  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   class class class wbr 4083   +oocpnf 8178   RR*cxr 8180    <_ cle 8182   NN0cn0 9369  NN0*cxnn0 9432   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-xnn0 9433  df-z 9447
This theorem is referenced by:  pcgcd  12852
  Copyright terms: Public domain W3C validator