ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfrecap GIF version

Theorem prodfrecap 11554
Description: The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
prodfap0.2 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
prodfap0.3 ((πœ‘ ∧ π‘˜ ∈ (𝑀...𝑁)) β†’ (πΉβ€˜π‘˜) # 0)
prodfrec.4 ((πœ‘ ∧ π‘˜ ∈ (𝑀...𝑁)) β†’ (πΊβ€˜π‘˜) = (1 / (πΉβ€˜π‘˜)))
prodfrecap.g ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΊβ€˜π‘˜) ∈ β„‚)
Assertion
Ref Expression
prodfrecap (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘)))
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝑀   π‘˜,𝑁   πœ‘,π‘˜   π‘˜,𝐺

Proof of Theorem prodfrecap
Dummy variables 𝑛 𝑣 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
2 eluzfz2 10032 . . 3 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (πœ‘ β†’ 𝑁 ∈ (𝑀...𝑁))
4 fveq2 5516 . . . . 5 (π‘š = 𝑀 β†’ (seq𝑀( Β· , 𝐺)β€˜π‘š) = (seq𝑀( Β· , 𝐺)β€˜π‘€))
5 fveq2 5516 . . . . . 6 (π‘š = 𝑀 β†’ (seq𝑀( Β· , 𝐹)β€˜π‘š) = (seq𝑀( Β· , 𝐹)β€˜π‘€))
65oveq2d 5891 . . . . 5 (π‘š = 𝑀 β†’ (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š)) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘€)))
74, 6eqeq12d 2192 . . . 4 (π‘š = 𝑀 β†’ ((seq𝑀( Β· , 𝐺)β€˜π‘š) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š)) ↔ (seq𝑀( Β· , 𝐺)β€˜π‘€) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘€))))
87imbi2d 230 . . 3 (π‘š = 𝑀 β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘š) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘€) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘€)))))
9 fveq2 5516 . . . . 5 (π‘š = 𝑛 β†’ (seq𝑀( Β· , 𝐺)β€˜π‘š) = (seq𝑀( Β· , 𝐺)β€˜π‘›))
10 fveq2 5516 . . . . . 6 (π‘š = 𝑛 β†’ (seq𝑀( Β· , 𝐹)β€˜π‘š) = (seq𝑀( Β· , 𝐹)β€˜π‘›))
1110oveq2d 5891 . . . . 5 (π‘š = 𝑛 β†’ (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š)) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)))
129, 11eqeq12d 2192 . . . 4 (π‘š = 𝑛 β†’ ((seq𝑀( Β· , 𝐺)β€˜π‘š) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š)) ↔ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))))
1312imbi2d 230 . . 3 (π‘š = 𝑛 β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘š) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)))))
14 fveq2 5516 . . . . 5 (π‘š = (𝑛 + 1) β†’ (seq𝑀( Β· , 𝐺)β€˜π‘š) = (seq𝑀( Β· , 𝐺)β€˜(𝑛 + 1)))
15 fveq2 5516 . . . . . 6 (π‘š = (𝑛 + 1) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘š) = (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)))
1615oveq2d 5891 . . . . 5 (π‘š = (𝑛 + 1) β†’ (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š)) = (1 / (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1))))
1714, 16eqeq12d 2192 . . . 4 (π‘š = (𝑛 + 1) β†’ ((seq𝑀( Β· , 𝐺)β€˜π‘š) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š)) ↔ (seq𝑀( Β· , 𝐺)β€˜(𝑛 + 1)) = (1 / (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)))))
1817imbi2d 230 . . 3 (π‘š = (𝑛 + 1) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘š) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜(𝑛 + 1)) = (1 / (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1))))))
19 fveq2 5516 . . . . 5 (π‘š = 𝑁 β†’ (seq𝑀( Β· , 𝐺)β€˜π‘š) = (seq𝑀( Β· , 𝐺)β€˜π‘))
20 fveq2 5516 . . . . . 6 (π‘š = 𝑁 β†’ (seq𝑀( Β· , 𝐹)β€˜π‘š) = (seq𝑀( Β· , 𝐹)β€˜π‘))
2120oveq2d 5891 . . . . 5 (π‘š = 𝑁 β†’ (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š)) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘)))
2219, 21eqeq12d 2192 . . . 4 (π‘š = 𝑁 β†’ ((seq𝑀( Β· , 𝐺)β€˜π‘š) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š)) ↔ (seq𝑀( Β· , 𝐺)β€˜π‘) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘))))
2322imbi2d 230 . . 3 (π‘š = 𝑁 β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘š) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘š))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘)))))
24 eluzfz1 10031 . . . . . . 7 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ (𝑀...𝑁))
251, 24syl 14 . . . . . 6 (πœ‘ β†’ 𝑀 ∈ (𝑀...𝑁))
26 fveq2 5516 . . . . . . . . 9 (π‘˜ = 𝑀 β†’ (πΊβ€˜π‘˜) = (πΊβ€˜π‘€))
27 fveq2 5516 . . . . . . . . . 10 (π‘˜ = 𝑀 β†’ (πΉβ€˜π‘˜) = (πΉβ€˜π‘€))
2827oveq2d 5891 . . . . . . . . 9 (π‘˜ = 𝑀 β†’ (1 / (πΉβ€˜π‘˜)) = (1 / (πΉβ€˜π‘€)))
2926, 28eqeq12d 2192 . . . . . . . 8 (π‘˜ = 𝑀 β†’ ((πΊβ€˜π‘˜) = (1 / (πΉβ€˜π‘˜)) ↔ (πΊβ€˜π‘€) = (1 / (πΉβ€˜π‘€))))
3029imbi2d 230 . . . . . . 7 (π‘˜ = 𝑀 β†’ ((πœ‘ β†’ (πΊβ€˜π‘˜) = (1 / (πΉβ€˜π‘˜))) ↔ (πœ‘ β†’ (πΊβ€˜π‘€) = (1 / (πΉβ€˜π‘€)))))
31 prodfrec.4 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ (𝑀...𝑁)) β†’ (πΊβ€˜π‘˜) = (1 / (πΉβ€˜π‘˜)))
3231expcom 116 . . . . . . 7 (π‘˜ ∈ (𝑀...𝑁) β†’ (πœ‘ β†’ (πΊβ€˜π‘˜) = (1 / (πΉβ€˜π‘˜))))
3330, 32vtoclga 2804 . . . . . 6 (𝑀 ∈ (𝑀...𝑁) β†’ (πœ‘ β†’ (πΊβ€˜π‘€) = (1 / (πΉβ€˜π‘€))))
3425, 33mpcom 36 . . . . 5 (πœ‘ β†’ (πΊβ€˜π‘€) = (1 / (πΉβ€˜π‘€)))
35 eluzel2 9533 . . . . . . 7 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ β„€)
361, 35syl 14 . . . . . 6 (πœ‘ β†’ 𝑀 ∈ β„€)
37 prodfrecap.g . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΊβ€˜π‘˜) ∈ β„‚)
38 mulcl 7938 . . . . . . 7 ((π‘˜ ∈ β„‚ ∧ 𝑣 ∈ β„‚) β†’ (π‘˜ Β· 𝑣) ∈ β„‚)
3938adantl 277 . . . . . 6 ((πœ‘ ∧ (π‘˜ ∈ β„‚ ∧ 𝑣 ∈ β„‚)) β†’ (π‘˜ Β· 𝑣) ∈ β„‚)
4036, 37, 39seq3-1 10460 . . . . 5 (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘€) = (πΊβ€˜π‘€))
41 prodfap0.2 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
4236, 41, 39seq3-1 10460 . . . . . 6 (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘€) = (πΉβ€˜π‘€))
4342oveq2d 5891 . . . . 5 (πœ‘ β†’ (1 / (seq𝑀( Β· , 𝐹)β€˜π‘€)) = (1 / (πΉβ€˜π‘€)))
4434, 40, 433eqtr4d 2220 . . . 4 (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘€) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘€)))
4544a1i 9 . . 3 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘€) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘€))))
46 oveq1 5882 . . . . . . . . 9 ((seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) β†’ ((seq𝑀( Β· , 𝐺)β€˜π‘›) Β· (πΊβ€˜(𝑛 + 1))) = ((1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) Β· (πΊβ€˜(𝑛 + 1))))
47463ad2ant3 1020 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , 𝐺)β€˜π‘›) Β· (πΊβ€˜(𝑛 + 1))) = ((1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) Β· (πΊβ€˜(𝑛 + 1))))
48 fzofzp1 10227 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) β†’ (𝑛 + 1) ∈ (𝑀...𝑁))
49 fveq2 5516 . . . . . . . . . . . . . . . 16 (π‘˜ = (𝑛 + 1) β†’ (πΊβ€˜π‘˜) = (πΊβ€˜(𝑛 + 1)))
50 fveq2 5516 . . . . . . . . . . . . . . . . 17 (π‘˜ = (𝑛 + 1) β†’ (πΉβ€˜π‘˜) = (πΉβ€˜(𝑛 + 1)))
5150oveq2d 5891 . . . . . . . . . . . . . . . 16 (π‘˜ = (𝑛 + 1) β†’ (1 / (πΉβ€˜π‘˜)) = (1 / (πΉβ€˜(𝑛 + 1))))
5249, 51eqeq12d 2192 . . . . . . . . . . . . . . 15 (π‘˜ = (𝑛 + 1) β†’ ((πΊβ€˜π‘˜) = (1 / (πΉβ€˜π‘˜)) ↔ (πΊβ€˜(𝑛 + 1)) = (1 / (πΉβ€˜(𝑛 + 1)))))
5352imbi2d 230 . . . . . . . . . . . . . 14 (π‘˜ = (𝑛 + 1) β†’ ((πœ‘ β†’ (πΊβ€˜π‘˜) = (1 / (πΉβ€˜π‘˜))) ↔ (πœ‘ β†’ (πΊβ€˜(𝑛 + 1)) = (1 / (πΉβ€˜(𝑛 + 1))))))
5453, 32vtoclga 2804 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ (𝑀...𝑁) β†’ (πœ‘ β†’ (πΊβ€˜(𝑛 + 1)) = (1 / (πΉβ€˜(𝑛 + 1)))))
5548, 54syl 14 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀..^𝑁) β†’ (πœ‘ β†’ (πΊβ€˜(𝑛 + 1)) = (1 / (πΉβ€˜(𝑛 + 1)))))
5655impcom 125 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ (πΊβ€˜(𝑛 + 1)) = (1 / (πΉβ€˜(𝑛 + 1))))
5756oveq2d 5891 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ ((1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) Β· (πΊβ€˜(𝑛 + 1))) = ((1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) Β· (1 / (πΉβ€˜(𝑛 + 1)))))
58 1cnd 7973 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ 1 ∈ β„‚)
59 eqid 2177 . . . . . . . . . . . . . . 15 (β„€β‰₯β€˜π‘€) = (β„€β‰₯β€˜π‘€)
6059, 36, 41prodf 11546 . . . . . . . . . . . . . 14 (πœ‘ β†’ seq𝑀( Β· , 𝐹):(β„€β‰₯β€˜π‘€)βŸΆβ„‚)
6160adantr 276 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ seq𝑀( Β· , 𝐹):(β„€β‰₯β€˜π‘€)βŸΆβ„‚)
62 elfzouz 10151 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝑀..^𝑁) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
6362adantl 277 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
6461, 63ffvelcdmd 5653 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘›) ∈ β„‚)
6550eleq1d 2246 . . . . . . . . . . . . . . . 16 (π‘˜ = (𝑛 + 1) β†’ ((πΉβ€˜π‘˜) ∈ β„‚ ↔ (πΉβ€˜(𝑛 + 1)) ∈ β„‚))
6665imbi2d 230 . . . . . . . . . . . . . . 15 (π‘˜ = (𝑛 + 1) β†’ ((πœ‘ β†’ (πΉβ€˜π‘˜) ∈ β„‚) ↔ (πœ‘ β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)))
67 elfzuz 10021 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ (𝑀...𝑁) β†’ π‘˜ ∈ (β„€β‰₯β€˜π‘€))
6841expcom 116 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ (β„€β‰₯β€˜π‘€) β†’ (πœ‘ β†’ (πΉβ€˜π‘˜) ∈ β„‚))
6967, 68syl 14 . . . . . . . . . . . . . . 15 (π‘˜ ∈ (𝑀...𝑁) β†’ (πœ‘ β†’ (πΉβ€˜π‘˜) ∈ β„‚))
7066, 69vtoclga 2804 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) β†’ (πœ‘ β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚))
7148, 70syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) β†’ (πœ‘ β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚))
7271impcom 125 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)
7341adantlr 477 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
74 elfzouz2 10161 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑀..^𝑁) β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘›))
75 fzss2 10064 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (β„€β‰₯β€˜π‘›) β†’ (𝑀...𝑛) βŠ† (𝑀...𝑁))
7674, 75syl 14 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀..^𝑁) β†’ (𝑀...𝑛) βŠ† (𝑀...𝑁))
7776sselda 3156 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (𝑀..^𝑁) ∧ π‘˜ ∈ (𝑀...𝑛)) β†’ π‘˜ ∈ (𝑀...𝑁))
78 prodfap0.3 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘˜ ∈ (𝑀...𝑁)) β†’ (πΉβ€˜π‘˜) # 0)
7977, 78sylan2 286 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ (𝑀..^𝑁) ∧ π‘˜ ∈ (𝑀...𝑛))) β†’ (πΉβ€˜π‘˜) # 0)
8079anassrs 400 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ π‘˜ ∈ (𝑀...𝑛)) β†’ (πΉβ€˜π‘˜) # 0)
8163, 73, 80prodfap0 11553 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘›) # 0)
8250breq1d 4014 . . . . . . . . . . . . . . . 16 (π‘˜ = (𝑛 + 1) β†’ ((πΉβ€˜π‘˜) # 0 ↔ (πΉβ€˜(𝑛 + 1)) # 0))
8382imbi2d 230 . . . . . . . . . . . . . . 15 (π‘˜ = (𝑛 + 1) β†’ ((πœ‘ β†’ (πΉβ€˜π‘˜) # 0) ↔ (πœ‘ β†’ (πΉβ€˜(𝑛 + 1)) # 0)))
8478expcom 116 . . . . . . . . . . . . . . 15 (π‘˜ ∈ (𝑀...𝑁) β†’ (πœ‘ β†’ (πΉβ€˜π‘˜) # 0))
8583, 84vtoclga 2804 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) β†’ (πœ‘ β†’ (πΉβ€˜(𝑛 + 1)) # 0))
8648, 85syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) β†’ (πœ‘ β†’ (πΉβ€˜(𝑛 + 1)) # 0))
8786impcom 125 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ (πΉβ€˜(𝑛 + 1)) # 0)
8858, 64, 58, 72, 81, 87divmuldivapd 8789 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ ((1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) Β· (1 / (πΉβ€˜(𝑛 + 1)))) = ((1 Β· 1) / ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
89 1t1e1 9071 . . . . . . . . . . . 12 (1 Β· 1) = 1
9089oveq1i 5885 . . . . . . . . . . 11 ((1 Β· 1) / ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))) = (1 / ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
9188, 90eqtrdi 2226 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ ((1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) Β· (1 / (πΉβ€˜(𝑛 + 1)))) = (1 / ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
9257, 91eqtrd 2210 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁)) β†’ ((1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) Β· (πΊβ€˜(𝑛 + 1))) = (1 / ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
93923adant3 1017 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) β†’ ((1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) Β· (πΊβ€˜(𝑛 + 1))) = (1 / ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
9447, 93eqtrd 2210 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , 𝐺)β€˜π‘›) Β· (πΊβ€˜(𝑛 + 1))) = (1 / ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
95633adant3 1017 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
96373ad2antl1 1159 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΊβ€˜π‘˜) ∈ β„‚)
9738adantl 277 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) ∧ (π‘˜ ∈ β„‚ ∧ 𝑣 ∈ β„‚)) β†’ (π‘˜ Β· 𝑣) ∈ β„‚)
9895, 96, 97seq3p1 10462 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , 𝐺)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐺)β€˜π‘›) Β· (πΊβ€˜(𝑛 + 1))))
99413ad2antl1 1159 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
10095, 99, 97seq3p1 10462 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
101100oveq2d 5891 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) β†’ (1 / (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1))) = (1 / ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
10294, 98, 1013eqtr4d 2220 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , 𝐺)β€˜(𝑛 + 1)) = (1 / (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1))))
1031023exp 1202 . . . . 5 (πœ‘ β†’ (𝑛 ∈ (𝑀..^𝑁) β†’ ((seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , 𝐺)β€˜(𝑛 + 1)) = (1 / (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1))))))
104103com12 30 . . . 4 (𝑛 ∈ (𝑀..^𝑁) β†’ (πœ‘ β†’ ((seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , 𝐺)β€˜(𝑛 + 1)) = (1 / (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1))))))
105104a2d 26 . . 3 (𝑛 ∈ (𝑀..^𝑁) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘›) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘›))) β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜(𝑛 + 1)) = (1 / (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1))))))
1068, 13, 18, 23, 45, 105fzind2 10239 . 2 (𝑁 ∈ (𝑀...𝑁) β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘))))
1073, 106mpcom 36 1 (πœ‘ β†’ (seq𝑀( Β· , 𝐺)β€˜π‘) = (1 / (seq𝑀( Β· , 𝐹)β€˜π‘)))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ∧ w3a 978   = wceq 1353   ∈ wcel 2148   βŠ† wss 3130   class class class wbr 4004  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875  β„‚cc 7809  0cc0 7811  1c1 7812   + caddc 7814   Β· cmul 7816   # cap 8538   / cdiv 8629  β„€cz 9253  β„€β‰₯cuz 9528  ...cfz 10008  ..^cfzo 10142  seqcseq 10445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-fz 10009  df-fzo 10143  df-seqfrec 10446
This theorem is referenced by:  prodfdivap  11555
  Copyright terms: Public domain W3C validator