ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfrecap GIF version

Theorem prodfrecap 11509
Description: The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfap0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
prodfap0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)
prodfrec.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))
prodfrecap.g ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
Assertion
Ref Expression
prodfrecap (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝐺

Proof of Theorem prodfrecap
Dummy variables 𝑛 𝑣 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9988 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5496 . . . . 5 (𝑚 = 𝑀 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑀))
5 fveq2 5496 . . . . . 6 (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀))
65oveq2d 5869 . . . . 5 (𝑚 = 𝑀 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))
74, 6eqeq12d 2185 . . . 4 (𝑚 = 𝑀 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))))
87imbi2d 229 . . 3 (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))))
9 fveq2 5496 . . . . 5 (𝑚 = 𝑛 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑛))
10 fveq2 5496 . . . . . 6 (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛))
1110oveq2d 5869 . . . . 5 (𝑚 = 𝑛 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑛)))
129, 11eqeq12d 2185 . . . 4 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))))
1312imbi2d 229 . . 3 (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)))))
14 fveq2 5496 . . . . 5 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘(𝑛 + 1)))
15 fveq2 5496 . . . . . 6 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
1615oveq2d 5869 . . . . 5 (𝑚 = (𝑛 + 1) → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))
1714, 16eqeq12d 2185 . . . 4 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))
1817imbi2d 229 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
19 fveq2 5496 . . . . 5 (𝑚 = 𝑁 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑁))
20 fveq2 5496 . . . . . 6 (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁))
2120oveq2d 5869 . . . . 5 (𝑚 = 𝑁 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
2219, 21eqeq12d 2185 . . . 4 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))))
2322imbi2d 229 . . 3 (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))))
24 eluzfz1 9987 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
251, 24syl 14 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
26 fveq2 5496 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
27 fveq2 5496 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2827oveq2d 5869 . . . . . . . . 9 (𝑘 = 𝑀 → (1 / (𝐹𝑘)) = (1 / (𝐹𝑀)))
2926, 28eqeq12d 2185 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐺𝑘) = (1 / (𝐹𝑘)) ↔ (𝐺𝑀) = (1 / (𝐹𝑀))))
3029imbi2d 229 . . . . . . 7 (𝑘 = 𝑀 → ((𝜑 → (𝐺𝑘) = (1 / (𝐹𝑘))) ↔ (𝜑 → (𝐺𝑀) = (1 / (𝐹𝑀)))))
31 prodfrec.4 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))
3231expcom 115 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐺𝑘) = (1 / (𝐹𝑘))))
3330, 32vtoclga 2796 . . . . . 6 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐺𝑀) = (1 / (𝐹𝑀))))
3425, 33mpcom 36 . . . . 5 (𝜑 → (𝐺𝑀) = (1 / (𝐹𝑀)))
35 eluzel2 9492 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
361, 35syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
37 prodfrecap.g . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
38 mulcl 7901 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ)
3938adantl 275 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
4036, 37, 39seq3-1 10416 . . . . 5 (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (𝐺𝑀))
41 prodfap0.2 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4236, 41, 39seq3-1 10416 . . . . . 6 (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
4342oveq2d 5869 . . . . 5 (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑀)) = (1 / (𝐹𝑀)))
4434, 40, 433eqtr4d 2213 . . . 4 (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))
4544a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))))
46 oveq1 5860 . . . . . . . . 9 ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))))
47463ad2ant3 1015 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))))
48 fzofzp1 10183 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
49 fveq2 5496 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
50 fveq2 5496 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
5150oveq2d 5869 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → (1 / (𝐹𝑘)) = (1 / (𝐹‘(𝑛 + 1))))
5249, 51eqeq12d 2185 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝐺𝑘) = (1 / (𝐹𝑘)) ↔ (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))
5352imbi2d 229 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐺𝑘) = (1 / (𝐹𝑘))) ↔ (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))))
5453, 32vtoclga 2796 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))
5548, 54syl 14 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))
5655impcom 124 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))
5756oveq2d 5869 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))))
58 1cnd 7936 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
59 eqid 2170 . . . . . . . . . . . . . . 15 (ℤ𝑀) = (ℤ𝑀)
6059, 36, 41prodf 11501 . . . . . . . . . . . . . 14 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
6160adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
62 elfzouz 10107 . . . . . . . . . . . . . 14 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
6362adantl 275 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
6461, 63ffvelrnd 5632 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
6550eleq1d 2239 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
6665imbi2d 229 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)))
67 elfzuz 9977 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
6841expcom 115 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (𝐹𝑘) ∈ ℂ))
6967, 68syl 14 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ∈ ℂ))
7066, 69vtoclga 2796 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
7148, 70syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
7271impcom 124 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
7341adantlr 474 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
74 elfzouz2 10117 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑛))
75 fzss2 10020 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
7674, 75syl 14 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀..^𝑁) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
7776sselda 3147 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁))
78 prodfap0.3 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)
7977, 78sylan2 284 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹𝑘) # 0)
8079anassrs 398 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) # 0)
8163, 73, 80prodfap0 11508 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) # 0)
8250breq1d 3999 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) # 0 ↔ (𝐹‘(𝑛 + 1)) # 0))
8382imbi2d 229 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) # 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) # 0)))
8478expcom 115 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) # 0))
8583, 84vtoclga 2796 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) # 0))
8648, 85syl 14 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) # 0))
8786impcom 124 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) # 0)
8858, 64, 58, 72, 81, 87divmuldivapd 8749 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = ((1 · 1) / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
89 1t1e1 9030 . . . . . . . . . . . 12 (1 · 1) = 1
9089oveq1i 5863 . . . . . . . . . . 11 ((1 · 1) / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
9188, 90eqtrdi 2219 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
9257, 91eqtrd 2203 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
93923adant3 1012 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
9447, 93eqtrd 2203 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
95633adant3 1012 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → 𝑛 ∈ (ℤ𝑀))
96373ad2antl1 1154 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
9738adantl 275 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
9895, 96, 97seq3p1 10418 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))))
99413ad2antl1 1154 . . . . . . . . 9 (((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
10095, 99, 97seq3p1 10418 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
101100oveq2d 5869 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
10294, 98, 1013eqtr4d 2213 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))
1031023exp 1197 . . . . 5 (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
104103com12 30 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
105104a2d 26 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))))
1068, 13, 18, 23, 45, 105fzind2 10195 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))))
1073, 106mpcom 36 1 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wss 3121   class class class wbr 3989  wf 5194  cfv 5198  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   # cap 8500   / cdiv 8589  cz 9212  cuz 9487  ...cfz 9965  ..^cfzo 10098  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099  df-seqfrec 10402
This theorem is referenced by:  prodfdivap  11510
  Copyright terms: Public domain W3C validator