| Step | Hyp | Ref
| Expression |
| 1 | | prodfap0.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | eluzfz2 10124 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 4 | | fveq2 5561 |
. . . . 5
⊢ (𝑚 = 𝑀 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑀)) |
| 5 | | fveq2 5561 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀)) |
| 6 | 5 | oveq2d 5941 |
. . . . 5
⊢ (𝑚 = 𝑀 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑀))) |
| 7 | 4, 6 | eqeq12d 2211 |
. . . 4
⊢ (𝑚 = 𝑀 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))) |
| 8 | 7 | imbi2d 230 |
. . 3
⊢ (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))))) |
| 9 | | fveq2 5561 |
. . . . 5
⊢ (𝑚 = 𝑛 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑛)) |
| 10 | | fveq2 5561 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛)) |
| 11 | 10 | oveq2d 5941 |
. . . . 5
⊢ (𝑚 = 𝑛 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) |
| 12 | 9, 11 | eqeq12d 2211 |
. . . 4
⊢ (𝑚 = 𝑛 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)))) |
| 13 | 12 | imbi2d 230 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))))) |
| 14 | | fveq2 5561 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘(𝑛 + 1))) |
| 15 | | fveq2 5561 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1))) |
| 16 | 15 | oveq2d 5941 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))) |
| 17 | 14, 16 | eqeq12d 2211 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))) |
| 18 | 17 | imbi2d 230 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))) |
| 19 | | fveq2 5561 |
. . . . 5
⊢ (𝑚 = 𝑁 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑁)) |
| 20 | | fveq2 5561 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁)) |
| 21 | 20 | oveq2d 5941 |
. . . . 5
⊢ (𝑚 = 𝑁 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑁))) |
| 22 | 19, 21 | eqeq12d 2211 |
. . . 4
⊢ (𝑚 = 𝑁 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))) |
| 23 | 22 | imbi2d 230 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))))) |
| 24 | | eluzfz1 10123 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 25 | 1, 24 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 26 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (𝐺‘𝑘) = (𝐺‘𝑀)) |
| 27 | | fveq2 5561 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
| 28 | 27 | oveq2d 5941 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (1 / (𝐹‘𝑘)) = (1 / (𝐹‘𝑀))) |
| 29 | 26, 28 | eqeq12d 2211 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → ((𝐺‘𝑘) = (1 / (𝐹‘𝑘)) ↔ (𝐺‘𝑀) = (1 / (𝐹‘𝑀)))) |
| 30 | 29 | imbi2d 230 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → ((𝜑 → (𝐺‘𝑘) = (1 / (𝐹‘𝑘))) ↔ (𝜑 → (𝐺‘𝑀) = (1 / (𝐹‘𝑀))))) |
| 31 | | prodfrec.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) = (1 / (𝐹‘𝑘))) |
| 32 | 31 | expcom 116 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐺‘𝑘) = (1 / (𝐹‘𝑘)))) |
| 33 | 30, 32 | vtoclga 2830 |
. . . . . 6
⊢ (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐺‘𝑀) = (1 / (𝐹‘𝑀)))) |
| 34 | 25, 33 | mpcom 36 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝑀) = (1 / (𝐹‘𝑀))) |
| 35 | | eluzel2 9623 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 36 | 1, 35 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 37 | | prodfrecap.g |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
| 38 | | mulcl 8023 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ) |
| 39 | 38 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ) |
| 40 | 36, 37, 39 | seq3-1 10571 |
. . . . 5
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (𝐺‘𝑀)) |
| 41 | | prodfap0.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 42 | 36, 41, 39 | seq3-1 10571 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 43 | 42 | oveq2d 5941 |
. . . . 5
⊢ (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑀)) = (1 / (𝐹‘𝑀))) |
| 44 | 34, 40, 43 | 3eqtr4d 2239 |
. . . 4
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))) |
| 45 | 44 | a1i 9 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))) |
| 46 | | oveq1 5932 |
. . . . . . . . 9
⊢
((seq𝑀( · ,
𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1)))) |
| 47 | 46 | 3ad2ant3 1022 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1)))) |
| 48 | | fzofzp1 10320 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
| 49 | | fveq2 5561 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑛 + 1))) |
| 50 | | fveq2 5561 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
| 51 | 50 | oveq2d 5941 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → (1 / (𝐹‘𝑘)) = (1 / (𝐹‘(𝑛 + 1)))) |
| 52 | 49, 51 | eqeq12d 2211 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → ((𝐺‘𝑘) = (1 / (𝐹‘𝑘)) ↔ (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))) |
| 53 | 52 | imbi2d 230 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐺‘𝑘) = (1 / (𝐹‘𝑘))) ↔ (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))) |
| 54 | 53, 32 | vtoclga 2830 |
. . . . . . . . . . . . 13
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))) |
| 55 | 48, 54 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))) |
| 56 | 55 | impcom 125 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))) |
| 57 | 56 | oveq2d 5941 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1))))) |
| 58 | | 1cnd 8059 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ) |
| 59 | | eqid 2196 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 60 | 59, 36, 41 | prodf 11720 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → seq𝑀( · , 𝐹):(ℤ≥‘𝑀)⟶ℂ) |
| 61 | 60 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → seq𝑀( · , 𝐹):(ℤ≥‘𝑀)⟶ℂ) |
| 62 | | elfzouz 10243 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 63 | 62 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 64 | 61, 63 | ffvelcdmd 5701 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ) |
| 65 | 50 | eleq1d 2265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
| 66 | 65 | imbi2d 230 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹‘𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))) |
| 67 | | elfzuz 10113 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 68 | 41 | expcom 116 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐹‘𝑘) ∈ ℂ)) |
| 69 | 67, 68 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘𝑘) ∈ ℂ)) |
| 70 | 66, 69 | vtoclga 2830 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
| 71 | 48, 70 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
| 72 | 71 | impcom 125 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ) |
| 73 | 41 | adantlr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 74 | | elfzouz2 10254 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) |
| 75 | | fzss2 10156 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
| 76 | 74, 75 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
| 77 | 76 | sselda 3184 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁)) |
| 78 | | prodfap0.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) # 0) |
| 79 | 77, 78 | sylan2 286 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹‘𝑘) # 0) |
| 80 | 79 | anassrs 400 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) # 0) |
| 81 | 63, 73, 80 | prodfap0 11727 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) # 0) |
| 82 | 50 | breq1d 4044 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) # 0 ↔ (𝐹‘(𝑛 + 1)) # 0)) |
| 83 | 82 | imbi2d 230 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹‘𝑘) # 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) # 0))) |
| 84 | 78 | expcom 116 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘𝑘) # 0)) |
| 85 | 83, 84 | vtoclga 2830 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) # 0)) |
| 86 | 48, 85 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) # 0)) |
| 87 | 86 | impcom 125 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) # 0) |
| 88 | 58, 64, 58, 72, 81, 87 | divmuldivapd 8876 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = ((1 · 1) / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
| 89 | | 1t1e1 9160 |
. . . . . . . . . . . 12
⊢ (1
· 1) = 1 |
| 90 | 89 | oveq1i 5935 |
. . . . . . . . . . 11
⊢ ((1
· 1) / ((seq𝑀(
· , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
| 91 | 88, 90 | eqtrdi 2245 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
| 92 | 57, 91 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
| 93 | 92 | 3adant3 1019 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
| 94 | 47, 93 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
| 95 | 63 | 3adant3 1019 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 96 | 37 | 3ad2antl1 1161 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
| 97 | 38 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ) |
| 98 | 95, 96, 97 | seq3p1 10574 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1)))) |
| 99 | 41 | 3ad2antl1 1161 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 100 | 95, 99, 97 | seq3p1 10574 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
| 101 | 100 | oveq2d 5941 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
| 102 | 94, 98, 101 | 3eqtr4d 2239 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))) |
| 103 | 102 | 3exp 1204 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))) |
| 104 | 103 | com12 30 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))) |
| 105 | 104 | a2d 26 |
. . 3
⊢ (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))) |
| 106 | 8, 13, 18, 23, 45, 105 | fzind2 10332 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))) |
| 107 | 3, 106 | mpcom 36 |
1
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))) |