Step | Hyp | Ref
| Expression |
1 | | prodfap0.1 |
. . 3
β’ (π β π β (β€β₯βπ)) |
2 | | eluzfz2 10032 |
. . 3
β’ (π β
(β€β₯βπ) β π β (π...π)) |
3 | 1, 2 | syl 14 |
. 2
β’ (π β π β (π...π)) |
4 | | fveq2 5516 |
. . . . 5
β’ (π = π β (seqπ( Β· , πΊ)βπ) = (seqπ( Β· , πΊ)βπ)) |
5 | | fveq2 5516 |
. . . . . 6
β’ (π = π β (seqπ( Β· , πΉ)βπ) = (seqπ( Β· , πΉ)βπ)) |
6 | 5 | oveq2d 5891 |
. . . . 5
β’ (π = π β (1 / (seqπ( Β· , πΉ)βπ)) = (1 / (seqπ( Β· , πΉ)βπ))) |
7 | 4, 6 | eqeq12d 2192 |
. . . 4
β’ (π = π β ((seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)) β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)))) |
8 | 7 | imbi2d 230 |
. . 3
β’ (π = π β ((π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β (π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))))) |
9 | | fveq2 5516 |
. . . . 5
β’ (π = π β (seqπ( Β· , πΊ)βπ) = (seqπ( Β· , πΊ)βπ)) |
10 | | fveq2 5516 |
. . . . . 6
β’ (π = π β (seqπ( Β· , πΉ)βπ) = (seqπ( Β· , πΉ)βπ)) |
11 | 10 | oveq2d 5891 |
. . . . 5
β’ (π = π β (1 / (seqπ( Β· , πΉ)βπ)) = (1 / (seqπ( Β· , πΉ)βπ))) |
12 | 9, 11 | eqeq12d 2192 |
. . . 4
β’ (π = π β ((seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)) β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)))) |
13 | 12 | imbi2d 230 |
. . 3
β’ (π = π β ((π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β (π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))))) |
14 | | fveq2 5516 |
. . . . 5
β’ (π = (π + 1) β (seqπ( Β· , πΊ)βπ) = (seqπ( Β· , πΊ)β(π + 1))) |
15 | | fveq2 5516 |
. . . . . 6
β’ (π = (π + 1) β (seqπ( Β· , πΉ)βπ) = (seqπ( Β· , πΉ)β(π + 1))) |
16 | 15 | oveq2d 5891 |
. . . . 5
β’ (π = (π + 1) β (1 / (seqπ( Β· , πΉ)βπ)) = (1 / (seqπ( Β· , πΉ)β(π + 1)))) |
17 | 14, 16 | eqeq12d 2192 |
. . . 4
β’ (π = (π + 1) β ((seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)) β (seqπ( Β· , πΊ)β(π + 1)) = (1 / (seqπ( Β· , πΉ)β(π + 1))))) |
18 | 17 | imbi2d 230 |
. . 3
β’ (π = (π + 1) β ((π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β (π β (seqπ( Β· , πΊ)β(π + 1)) = (1 / (seqπ( Β· , πΉ)β(π + 1)))))) |
19 | | fveq2 5516 |
. . . . 5
β’ (π = π β (seqπ( Β· , πΊ)βπ) = (seqπ( Β· , πΊ)βπ)) |
20 | | fveq2 5516 |
. . . . . 6
β’ (π = π β (seqπ( Β· , πΉ)βπ) = (seqπ( Β· , πΉ)βπ)) |
21 | 20 | oveq2d 5891 |
. . . . 5
β’ (π = π β (1 / (seqπ( Β· , πΉ)βπ)) = (1 / (seqπ( Β· , πΉ)βπ))) |
22 | 19, 21 | eqeq12d 2192 |
. . . 4
β’ (π = π β ((seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)) β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)))) |
23 | 22 | imbi2d 230 |
. . 3
β’ (π = π β ((π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β (π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))))) |
24 | | eluzfz1 10031 |
. . . . . . 7
β’ (π β
(β€β₯βπ) β π β (π...π)) |
25 | 1, 24 | syl 14 |
. . . . . 6
β’ (π β π β (π...π)) |
26 | | fveq2 5516 |
. . . . . . . . 9
β’ (π = π β (πΊβπ) = (πΊβπ)) |
27 | | fveq2 5516 |
. . . . . . . . . 10
β’ (π = π β (πΉβπ) = (πΉβπ)) |
28 | 27 | oveq2d 5891 |
. . . . . . . . 9
β’ (π = π β (1 / (πΉβπ)) = (1 / (πΉβπ))) |
29 | 26, 28 | eqeq12d 2192 |
. . . . . . . 8
β’ (π = π β ((πΊβπ) = (1 / (πΉβπ)) β (πΊβπ) = (1 / (πΉβπ)))) |
30 | 29 | imbi2d 230 |
. . . . . . 7
β’ (π = π β ((π β (πΊβπ) = (1 / (πΉβπ))) β (π β (πΊβπ) = (1 / (πΉβπ))))) |
31 | | prodfrec.4 |
. . . . . . . 8
β’ ((π β§ π β (π...π)) β (πΊβπ) = (1 / (πΉβπ))) |
32 | 31 | expcom 116 |
. . . . . . 7
β’ (π β (π...π) β (π β (πΊβπ) = (1 / (πΉβπ)))) |
33 | 30, 32 | vtoclga 2804 |
. . . . . 6
β’ (π β (π...π) β (π β (πΊβπ) = (1 / (πΉβπ)))) |
34 | 25, 33 | mpcom 36 |
. . . . 5
β’ (π β (πΊβπ) = (1 / (πΉβπ))) |
35 | | eluzel2 9533 |
. . . . . . 7
β’ (π β
(β€β₯βπ) β π β β€) |
36 | 1, 35 | syl 14 |
. . . . . 6
β’ (π β π β β€) |
37 | | prodfrecap.g |
. . . . . 6
β’ ((π β§ π β (β€β₯βπ)) β (πΊβπ) β β) |
38 | | mulcl 7938 |
. . . . . . 7
β’ ((π β β β§ π£ β β) β (π Β· π£) β β) |
39 | 38 | adantl 277 |
. . . . . 6
β’ ((π β§ (π β β β§ π£ β β)) β (π Β· π£) β β) |
40 | 36, 37, 39 | seq3-1 10460 |
. . . . 5
β’ (π β (seqπ( Β· , πΊ)βπ) = (πΊβπ)) |
41 | | prodfap0.2 |
. . . . . . 7
β’ ((π β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
42 | 36, 41, 39 | seq3-1 10460 |
. . . . . 6
β’ (π β (seqπ( Β· , πΉ)βπ) = (πΉβπ)) |
43 | 42 | oveq2d 5891 |
. . . . 5
β’ (π β (1 / (seqπ( Β· , πΉ)βπ)) = (1 / (πΉβπ))) |
44 | 34, 40, 43 | 3eqtr4d 2220 |
. . . 4
β’ (π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) |
45 | 44 | a1i 9 |
. . 3
β’ (π β
(β€β₯βπ) β (π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)))) |
46 | | oveq1 5882 |
. . . . . . . . 9
β’
((seqπ( Β· ,
πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)) β ((seqπ( Β· , πΊ)βπ) Β· (πΊβ(π + 1))) = ((1 / (seqπ( Β· , πΉ)βπ)) Β· (πΊβ(π + 1)))) |
47 | 46 | 3ad2ant3 1020 |
. . . . . . . 8
β’ ((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β ((seqπ( Β· , πΊ)βπ) Β· (πΊβ(π + 1))) = ((1 / (seqπ( Β· , πΉ)βπ)) Β· (πΊβ(π + 1)))) |
48 | | fzofzp1 10227 |
. . . . . . . . . . . . 13
β’ (π β (π..^π) β (π + 1) β (π...π)) |
49 | | fveq2 5516 |
. . . . . . . . . . . . . . . 16
β’ (π = (π + 1) β (πΊβπ) = (πΊβ(π + 1))) |
50 | | fveq2 5516 |
. . . . . . . . . . . . . . . . 17
β’ (π = (π + 1) β (πΉβπ) = (πΉβ(π + 1))) |
51 | 50 | oveq2d 5891 |
. . . . . . . . . . . . . . . 16
β’ (π = (π + 1) β (1 / (πΉβπ)) = (1 / (πΉβ(π + 1)))) |
52 | 49, 51 | eqeq12d 2192 |
. . . . . . . . . . . . . . 15
β’ (π = (π + 1) β ((πΊβπ) = (1 / (πΉβπ)) β (πΊβ(π + 1)) = (1 / (πΉβ(π + 1))))) |
53 | 52 | imbi2d 230 |
. . . . . . . . . . . . . 14
β’ (π = (π + 1) β ((π β (πΊβπ) = (1 / (πΉβπ))) β (π β (πΊβ(π + 1)) = (1 / (πΉβ(π + 1)))))) |
54 | 53, 32 | vtoclga 2804 |
. . . . . . . . . . . . 13
β’ ((π + 1) β (π...π) β (π β (πΊβ(π + 1)) = (1 / (πΉβ(π + 1))))) |
55 | 48, 54 | syl 14 |
. . . . . . . . . . . 12
β’ (π β (π..^π) β (π β (πΊβ(π + 1)) = (1 / (πΉβ(π + 1))))) |
56 | 55 | impcom 125 |
. . . . . . . . . . 11
β’ ((π β§ π β (π..^π)) β (πΊβ(π + 1)) = (1 / (πΉβ(π + 1)))) |
57 | 56 | oveq2d 5891 |
. . . . . . . . . 10
β’ ((π β§ π β (π..^π)) β ((1 / (seqπ( Β· , πΉ)βπ)) Β· (πΊβ(π + 1))) = ((1 / (seqπ( Β· , πΉ)βπ)) Β· (1 / (πΉβ(π + 1))))) |
58 | | 1cnd 7973 |
. . . . . . . . . . . 12
β’ ((π β§ π β (π..^π)) β 1 β β) |
59 | | eqid 2177 |
. . . . . . . . . . . . . . 15
β’
(β€β₯βπ) = (β€β₯βπ) |
60 | 59, 36, 41 | prodf 11546 |
. . . . . . . . . . . . . 14
β’ (π β seqπ( Β· , πΉ):(β€β₯βπ)βΆβ) |
61 | 60 | adantr 276 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (π..^π)) β seqπ( Β· , πΉ):(β€β₯βπ)βΆβ) |
62 | | elfzouz 10151 |
. . . . . . . . . . . . . 14
β’ (π β (π..^π) β π β (β€β₯βπ)) |
63 | 62 | adantl 277 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (π..^π)) β π β (β€β₯βπ)) |
64 | 61, 63 | ffvelcdmd 5653 |
. . . . . . . . . . . 12
β’ ((π β§ π β (π..^π)) β (seqπ( Β· , πΉ)βπ) β β) |
65 | 50 | eleq1d 2246 |
. . . . . . . . . . . . . . . 16
β’ (π = (π + 1) β ((πΉβπ) β β β (πΉβ(π + 1)) β β)) |
66 | 65 | imbi2d 230 |
. . . . . . . . . . . . . . 15
β’ (π = (π + 1) β ((π β (πΉβπ) β β) β (π β (πΉβ(π + 1)) β β))) |
67 | | elfzuz 10021 |
. . . . . . . . . . . . . . . 16
β’ (π β (π...π) β π β (β€β₯βπ)) |
68 | 41 | expcom 116 |
. . . . . . . . . . . . . . . 16
β’ (π β
(β€β₯βπ) β (π β (πΉβπ) β β)) |
69 | 67, 68 | syl 14 |
. . . . . . . . . . . . . . 15
β’ (π β (π...π) β (π β (πΉβπ) β β)) |
70 | 66, 69 | vtoclga 2804 |
. . . . . . . . . . . . . 14
β’ ((π + 1) β (π...π) β (π β (πΉβ(π + 1)) β β)) |
71 | 48, 70 | syl 14 |
. . . . . . . . . . . . 13
β’ (π β (π..^π) β (π β (πΉβ(π + 1)) β β)) |
72 | 71 | impcom 125 |
. . . . . . . . . . . 12
β’ ((π β§ π β (π..^π)) β (πΉβ(π + 1)) β β) |
73 | 41 | adantlr 477 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (π..^π)) β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
74 | | elfzouz2 10161 |
. . . . . . . . . . . . . . . . 17
β’ (π β (π..^π) β π β (β€β₯βπ)) |
75 | | fzss2 10064 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(β€β₯βπ) β (π...π) β (π...π)) |
76 | 74, 75 | syl 14 |
. . . . . . . . . . . . . . . 16
β’ (π β (π..^π) β (π...π) β (π...π)) |
77 | 76 | sselda 3156 |
. . . . . . . . . . . . . . 15
β’ ((π β (π..^π) β§ π β (π...π)) β π β (π...π)) |
78 | | prodfap0.3 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (π...π)) β (πΉβπ) # 0) |
79 | 77, 78 | sylan2 286 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π β (π..^π) β§ π β (π...π))) β (πΉβπ) # 0) |
80 | 79 | anassrs 400 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (π..^π)) β§ π β (π...π)) β (πΉβπ) # 0) |
81 | 63, 73, 80 | prodfap0 11553 |
. . . . . . . . . . . 12
β’ ((π β§ π β (π..^π)) β (seqπ( Β· , πΉ)βπ) # 0) |
82 | 50 | breq1d 4014 |
. . . . . . . . . . . . . . . 16
β’ (π = (π + 1) β ((πΉβπ) # 0 β (πΉβ(π + 1)) # 0)) |
83 | 82 | imbi2d 230 |
. . . . . . . . . . . . . . 15
β’ (π = (π + 1) β ((π β (πΉβπ) # 0) β (π β (πΉβ(π + 1)) # 0))) |
84 | 78 | expcom 116 |
. . . . . . . . . . . . . . 15
β’ (π β (π...π) β (π β (πΉβπ) # 0)) |
85 | 83, 84 | vtoclga 2804 |
. . . . . . . . . . . . . 14
β’ ((π + 1) β (π...π) β (π β (πΉβ(π + 1)) # 0)) |
86 | 48, 85 | syl 14 |
. . . . . . . . . . . . 13
β’ (π β (π..^π) β (π β (πΉβ(π + 1)) # 0)) |
87 | 86 | impcom 125 |
. . . . . . . . . . . 12
β’ ((π β§ π β (π..^π)) β (πΉβ(π + 1)) # 0) |
88 | 58, 64, 58, 72, 81, 87 | divmuldivapd 8789 |
. . . . . . . . . . 11
β’ ((π β§ π β (π..^π)) β ((1 / (seqπ( Β· , πΉ)βπ)) Β· (1 / (πΉβ(π + 1)))) = ((1 Β· 1) / ((seqπ( Β· , πΉ)βπ) Β· (πΉβ(π + 1))))) |
89 | | 1t1e1 9071 |
. . . . . . . . . . . 12
β’ (1
Β· 1) = 1 |
90 | 89 | oveq1i 5885 |
. . . . . . . . . . 11
β’ ((1
Β· 1) / ((seqπ(
Β· , πΉ)βπ) Β· (πΉβ(π + 1)))) = (1 / ((seqπ( Β· , πΉ)βπ) Β· (πΉβ(π + 1)))) |
91 | 88, 90 | eqtrdi 2226 |
. . . . . . . . . 10
β’ ((π β§ π β (π..^π)) β ((1 / (seqπ( Β· , πΉ)βπ)) Β· (1 / (πΉβ(π + 1)))) = (1 / ((seqπ( Β· , πΉ)βπ) Β· (πΉβ(π + 1))))) |
92 | 57, 91 | eqtrd 2210 |
. . . . . . . . 9
β’ ((π β§ π β (π..^π)) β ((1 / (seqπ( Β· , πΉ)βπ)) Β· (πΊβ(π + 1))) = (1 / ((seqπ( Β· , πΉ)βπ) Β· (πΉβ(π + 1))))) |
93 | 92 | 3adant3 1017 |
. . . . . . . 8
β’ ((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β ((1 / (seqπ( Β· , πΉ)βπ)) Β· (πΊβ(π + 1))) = (1 / ((seqπ( Β· , πΉ)βπ) Β· (πΉβ(π + 1))))) |
94 | 47, 93 | eqtrd 2210 |
. . . . . . 7
β’ ((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β ((seqπ( Β· , πΊ)βπ) Β· (πΊβ(π + 1))) = (1 / ((seqπ( Β· , πΉ)βπ) Β· (πΉβ(π + 1))))) |
95 | 63 | 3adant3 1017 |
. . . . . . . 8
β’ ((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β π β (β€β₯βπ)) |
96 | 37 | 3ad2antl1 1159 |
. . . . . . . 8
β’ (((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β§ π β (β€β₯βπ)) β (πΊβπ) β β) |
97 | 38 | adantl 277 |
. . . . . . . 8
β’ (((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β§ (π β β β§ π£ β β)) β (π Β· π£) β β) |
98 | 95, 96, 97 | seq3p1 10462 |
. . . . . . 7
β’ ((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β (seqπ( Β· , πΊ)β(π + 1)) = ((seqπ( Β· , πΊ)βπ) Β· (πΊβ(π + 1)))) |
99 | 41 | 3ad2antl1 1159 |
. . . . . . . . 9
β’ (((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
100 | 95, 99, 97 | seq3p1 10462 |
. . . . . . . 8
β’ ((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β (seqπ( Β· , πΉ)β(π + 1)) = ((seqπ( Β· , πΉ)βπ) Β· (πΉβ(π + 1)))) |
101 | 100 | oveq2d 5891 |
. . . . . . 7
β’ ((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β (1 / (seqπ( Β· , πΉ)β(π + 1))) = (1 / ((seqπ( Β· , πΉ)βπ) Β· (πΉβ(π + 1))))) |
102 | 94, 98, 101 | 3eqtr4d 2220 |
. . . . . 6
β’ ((π β§ π β (π..^π) β§ (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β (seqπ( Β· , πΊ)β(π + 1)) = (1 / (seqπ( Β· , πΉ)β(π + 1)))) |
103 | 102 | 3exp 1202 |
. . . . 5
β’ (π β (π β (π..^π) β ((seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)) β (seqπ( Β· , πΊ)β(π + 1)) = (1 / (seqπ( Β· , πΉ)β(π + 1)))))) |
104 | 103 | com12 30 |
. . . 4
β’ (π β (π..^π) β (π β ((seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)) β (seqπ( Β· , πΊ)β(π + 1)) = (1 / (seqπ( Β· , πΉ)β(π + 1)))))) |
105 | 104 | a2d 26 |
. . 3
β’ (π β (π..^π) β ((π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) β (π β (seqπ( Β· , πΊ)β(π + 1)) = (1 / (seqπ( Β· , πΉ)β(π + 1)))))) |
106 | 8, 13, 18, 23, 45, 105 | fzind2 10239 |
. 2
β’ (π β (π...π) β (π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ)))) |
107 | 3, 106 | mpcom 36 |
1
β’ (π β (seqπ( Β· , πΊ)βπ) = (1 / (seqπ( Β· , πΉ)βπ))) |