Step | Hyp | Ref
| Expression |
1 | | prodfap0.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 9967 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | fveq2 5486 |
. . . . 5
⊢ (𝑚 = 𝑀 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑀)) |
5 | | fveq2 5486 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀)) |
6 | 5 | oveq2d 5858 |
. . . . 5
⊢ (𝑚 = 𝑀 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑀))) |
7 | 4, 6 | eqeq12d 2180 |
. . . 4
⊢ (𝑚 = 𝑀 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))) |
8 | 7 | imbi2d 229 |
. . 3
⊢ (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))))) |
9 | | fveq2 5486 |
. . . . 5
⊢ (𝑚 = 𝑛 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑛)) |
10 | | fveq2 5486 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛)) |
11 | 10 | oveq2d 5858 |
. . . . 5
⊢ (𝑚 = 𝑛 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) |
12 | 9, 11 | eqeq12d 2180 |
. . . 4
⊢ (𝑚 = 𝑛 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)))) |
13 | 12 | imbi2d 229 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))))) |
14 | | fveq2 5486 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘(𝑛 + 1))) |
15 | | fveq2 5486 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1))) |
16 | 15 | oveq2d 5858 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))) |
17 | 14, 16 | eqeq12d 2180 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))))) |
18 | 17 | imbi2d 229 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))) |
19 | | fveq2 5486 |
. . . . 5
⊢ (𝑚 = 𝑁 → (seq𝑀( · , 𝐺)‘𝑚) = (seq𝑀( · , 𝐺)‘𝑁)) |
20 | | fveq2 5486 |
. . . . . 6
⊢ (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁)) |
21 | 20 | oveq2d 5858 |
. . . . 5
⊢ (𝑚 = 𝑁 → (1 / (seq𝑀( · , 𝐹)‘𝑚)) = (1 / (seq𝑀( · , 𝐹)‘𝑁))) |
22 | 19, 21 | eqeq12d 2180 |
. . . 4
⊢ (𝑚 = 𝑁 → ((seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚)) ↔ (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))) |
23 | 22 | imbi2d 229 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑚) = (1 / (seq𝑀( · , 𝐹)‘𝑚))) ↔ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))))) |
24 | | eluzfz1 9966 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
25 | 1, 24 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
26 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (𝐺‘𝑘) = (𝐺‘𝑀)) |
27 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
28 | 27 | oveq2d 5858 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (1 / (𝐹‘𝑘)) = (1 / (𝐹‘𝑀))) |
29 | 26, 28 | eqeq12d 2180 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → ((𝐺‘𝑘) = (1 / (𝐹‘𝑘)) ↔ (𝐺‘𝑀) = (1 / (𝐹‘𝑀)))) |
30 | 29 | imbi2d 229 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → ((𝜑 → (𝐺‘𝑘) = (1 / (𝐹‘𝑘))) ↔ (𝜑 → (𝐺‘𝑀) = (1 / (𝐹‘𝑀))))) |
31 | | prodfrec.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) = (1 / (𝐹‘𝑘))) |
32 | 31 | expcom 115 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐺‘𝑘) = (1 / (𝐹‘𝑘)))) |
33 | 30, 32 | vtoclga 2792 |
. . . . . 6
⊢ (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐺‘𝑀) = (1 / (𝐹‘𝑀)))) |
34 | 25, 33 | mpcom 36 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝑀) = (1 / (𝐹‘𝑀))) |
35 | | eluzel2 9471 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
36 | 1, 35 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
37 | | prodfrecap.g |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
38 | | mulcl 7880 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ) |
39 | 38 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ) |
40 | 36, 37, 39 | seq3-1 10395 |
. . . . 5
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (𝐺‘𝑀)) |
41 | | prodfap0.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
42 | 36, 41, 39 | seq3-1 10395 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
43 | 42 | oveq2d 5858 |
. . . . 5
⊢ (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑀)) = (1 / (𝐹‘𝑀))) |
44 | 34, 40, 43 | 3eqtr4d 2208 |
. . . 4
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀))) |
45 | 44 | a1i 9 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑀) = (1 / (seq𝑀( · , 𝐹)‘𝑀)))) |
46 | | oveq1 5849 |
. . . . . . . . 9
⊢
((seq𝑀( · ,
𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1)))) |
47 | 46 | 3ad2ant3 1010 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1)))) |
48 | | fzofzp1 10162 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
49 | | fveq2 5486 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑛 + 1))) |
50 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
51 | 50 | oveq2d 5858 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → (1 / (𝐹‘𝑘)) = (1 / (𝐹‘(𝑛 + 1)))) |
52 | 49, 51 | eqeq12d 2180 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → ((𝐺‘𝑘) = (1 / (𝐹‘𝑘)) ↔ (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))) |
53 | 52 | imbi2d 229 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐺‘𝑘) = (1 / (𝐹‘𝑘))) ↔ (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))))) |
54 | 53, 32 | vtoclga 2792 |
. . . . . . . . . . . . 13
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))) |
55 | 48, 54 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1))))) |
56 | 55 | impcom 124 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) = (1 / (𝐹‘(𝑛 + 1)))) |
57 | 56 | oveq2d 5858 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1))))) |
58 | | 1cnd 7915 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ) |
59 | | eqid 2165 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
60 | 59, 36, 41 | prodf 11479 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → seq𝑀( · , 𝐹):(ℤ≥‘𝑀)⟶ℂ) |
61 | 60 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → seq𝑀( · , 𝐹):(ℤ≥‘𝑀)⟶ℂ) |
62 | | elfzouz 10086 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
63 | 62 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
64 | 61, 63 | ffvelrnd 5621 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ) |
65 | 50 | eleq1d 2235 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
66 | 65 | imbi2d 229 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹‘𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))) |
67 | | elfzuz 9956 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
68 | 41 | expcom 115 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐹‘𝑘) ∈ ℂ)) |
69 | 67, 68 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘𝑘) ∈ ℂ)) |
70 | 66, 69 | vtoclga 2792 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
71 | 48, 70 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
72 | 71 | impcom 124 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ) |
73 | 41 | adantlr 469 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
74 | | elfzouz2 10096 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝑛)) |
75 | | fzss2 9999 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
76 | 74, 75 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑀...𝑛) ⊆ (𝑀...𝑁)) |
77 | 76 | sselda 3142 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘 ∈ (𝑀...𝑁)) |
78 | | prodfap0.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) # 0) |
79 | 77, 78 | sylan2 284 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (𝑀..^𝑁) ∧ 𝑘 ∈ (𝑀...𝑛))) → (𝐹‘𝑘) # 0) |
80 | 79 | anassrs 398 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) # 0) |
81 | 63, 73, 80 | prodfap0 11486 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) # 0) |
82 | 50 | breq1d 3992 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) # 0 ↔ (𝐹‘(𝑛 + 1)) # 0)) |
83 | 82 | imbi2d 229 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹‘𝑘) # 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) # 0))) |
84 | 78 | expcom 115 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘𝑘) # 0)) |
85 | 83, 84 | vtoclga 2792 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) # 0)) |
86 | 48, 85 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) # 0)) |
87 | 86 | impcom 124 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) # 0) |
88 | 58, 64, 58, 72, 81, 87 | divmuldivapd 8728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = ((1 · 1) / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
89 | | 1t1e1 9009 |
. . . . . . . . . . . 12
⊢ (1
· 1) = 1 |
90 | 89 | oveq1i 5852 |
. . . . . . . . . . 11
⊢ ((1
· 1) / ((seq𝑀(
· , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
91 | 88, 90 | eqtrdi 2215 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (1 / (𝐹‘(𝑛 + 1)))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
92 | 57, 91 | eqtrd 2198 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
93 | 92 | 3adant3 1007 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((1 / (seq𝑀( · , 𝐹)‘𝑛)) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
94 | 47, 93 | eqtrd 2198 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
95 | 63 | 3adant3 1007 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
96 | 37 | 3ad2antl1 1149 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
97 | 38 | adantl 275 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ) |
98 | 95, 96, 97 | seq3p1 10397 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐺)‘𝑛) · (𝐺‘(𝑛 + 1)))) |
99 | 41 | 3ad2antl1 1149 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
100 | 95, 99, 97 | seq3p1 10397 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
101 | 100 | oveq2d 5858 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1))) = (1 / ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
102 | 94, 98, 101 | 3eqtr4d 2208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))) |
103 | 102 | 3exp 1192 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))) |
104 | 103 | com12 30 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))) |
105 | 104 | a2d 26 |
. . 3
⊢ (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐺)‘𝑛) = (1 / (seq𝑀( · , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , 𝐺)‘(𝑛 + 1)) = (1 / (seq𝑀( · , 𝐹)‘(𝑛 + 1)))))) |
106 | 8, 13, 18, 23, 45, 105 | fzind2 10174 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))) |
107 | 3, 106 | mpcom 36 |
1
⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))) |