ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidss GIF version

Theorem ringidss 13841
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ringidss.g 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
ringidss.b 𝐵 = (Base‘𝑅)
ringidss.u 1 = (1r𝑅)
Assertion
Ref Expression
ringidss ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))

Proof of Theorem ringidss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2206 . 2 (0g𝑀) = (0g𝑀)
3 eqid 2206 . 2 (+g𝑀) = (+g𝑀)
4 simp3 1002 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1𝐴)
5 ringidss.g . . . . 5 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
65a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴))
7 eqid 2206 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
8 ringidss.b . . . . . 6 𝐵 = (Base‘𝑅)
97, 8mgpbasg 13738 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
1093ad2ant1 1021 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐵 = (Base‘(mulGrp‘𝑅)))
117mgpex 13737 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ V)
12113ad2ant1 1021 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (mulGrp‘𝑅) ∈ V)
13 simp2 1001 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴𝐵)
146, 10, 12, 13ressbas2d 12950 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 = (Base‘𝑀))
154, 14eleqtrd 2285 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 ∈ (Base‘𝑀))
1614, 13eqsstrrd 3232 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (Base‘𝑀) ⊆ 𝐵)
1716sselda 3195 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → 𝑦𝐵)
18 eqid 2206 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
197, 18mgpplusgg 13736 . . . . . . . 8 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
20193ad2ant1 1021 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
21 basfn 12940 . . . . . . . . . 10 Base Fn V
22 simp1 1000 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝑅 ∈ Ring)
2322elexd 2787 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝑅 ∈ V)
24 funfvex 5603 . . . . . . . . . . 11 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2524funfni 5382 . . . . . . . . . 10 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2621, 23, 25sylancr 414 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (Base‘𝑅) ∈ V)
278, 26eqeltrid 2293 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐵 ∈ V)
2827, 13ssexd 4189 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 ∈ V)
296, 20, 28, 12ressplusgd 13011 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (.r𝑅) = (+g𝑀))
3029adantr 276 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (.r𝑅) = (+g𝑀))
3130oveqd 5971 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = ( 1 (+g𝑀)𝑦))
32 ringidss.u . . . . . 6 1 = (1r𝑅)
338, 18, 32ringlidm 13835 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
34333ad2antl1 1162 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
3531, 34eqtr3d 2241 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (+g𝑀)𝑦) = 𝑦)
3617, 35syldan 282 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → ( 1 (+g𝑀)𝑦) = 𝑦)
3730oveqd 5971 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = (𝑦(+g𝑀) 1 ))
388, 18, 32ringridm 13836 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
39383ad2antl1 1162 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
4037, 39eqtr3d 2241 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(+g𝑀) 1 ) = 𝑦)
4117, 40syldan 282 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑦(+g𝑀) 1 ) = 𝑦)
421, 2, 3, 15, 36, 41ismgmid2 13262 1 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  Vcvv 2773  wss 3168   Fn wfn 5272  cfv 5277  (class class class)co 5954  Basecbs 12882  s cress 12883  +gcplusg 12959  .rcmulr 12960  0gc0g 13138  mulGrpcmgp 13732  1rcur 13771  Ringcrg 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-mgp 13733  df-ur 13772  df-ring 13810
This theorem is referenced by:  unitgrpid  13930
  Copyright terms: Public domain W3C validator