ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidss GIF version

Theorem ringidss 13525
Description: A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
ringidss.g 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
ringidss.b 𝐵 = (Base‘𝑅)
ringidss.u 1 = (1r𝑅)
Assertion
Ref Expression
ringidss ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))

Proof of Theorem ringidss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2193 . 2 (0g𝑀) = (0g𝑀)
3 eqid 2193 . 2 (+g𝑀) = (+g𝑀)
4 simp3 1001 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1𝐴)
5 ringidss.g . . . . 5 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)
65a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴))
7 eqid 2193 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
8 ringidss.b . . . . . 6 𝐵 = (Base‘𝑅)
97, 8mgpbasg 13422 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
1093ad2ant1 1020 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐵 = (Base‘(mulGrp‘𝑅)))
117mgpex 13421 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ V)
12113ad2ant1 1020 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (mulGrp‘𝑅) ∈ V)
13 simp2 1000 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴𝐵)
146, 10, 12, 13ressbas2d 12686 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 = (Base‘𝑀))
154, 14eleqtrd 2272 . 2 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 ∈ (Base‘𝑀))
1614, 13eqsstrrd 3216 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (Base‘𝑀) ⊆ 𝐵)
1716sselda 3179 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → 𝑦𝐵)
18 eqid 2193 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
197, 18mgpplusgg 13420 . . . . . . . 8 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
20193ad2ant1 1020 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
21 basfn 12676 . . . . . . . . . 10 Base Fn V
22 simp1 999 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝑅 ∈ Ring)
2322elexd 2773 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝑅 ∈ V)
24 funfvex 5571 . . . . . . . . . . 11 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2524funfni 5354 . . . . . . . . . 10 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2621, 23, 25sylancr 414 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (Base‘𝑅) ∈ V)
278, 26eqeltrid 2280 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐵 ∈ V)
2827, 13ssexd 4169 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 𝐴 ∈ V)
296, 20, 28, 12ressplusgd 12746 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → (.r𝑅) = (+g𝑀))
3029adantr 276 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (.r𝑅) = (+g𝑀))
3130oveqd 5935 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = ( 1 (+g𝑀)𝑦))
32 ringidss.u . . . . . 6 1 = (1r𝑅)
338, 18, 32ringlidm 13519 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
34333ad2antl1 1161 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (.r𝑅)𝑦) = 𝑦)
3531, 34eqtr3d 2228 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → ( 1 (+g𝑀)𝑦) = 𝑦)
3617, 35syldan 282 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → ( 1 (+g𝑀)𝑦) = 𝑦)
3730oveqd 5935 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = (𝑦(+g𝑀) 1 ))
388, 18, 32ringridm 13520 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
39383ad2antl1 1161 . . . 4 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(.r𝑅) 1 ) = 𝑦)
4037, 39eqtr3d 2228 . . 3 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦𝐵) → (𝑦(+g𝑀) 1 ) = 𝑦)
4117, 40syldan 282 . 2 (((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑦(+g𝑀) 1 ) = 𝑦)
421, 2, 3, 15, 36, 41ismgmid2 12963 1 ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153   Fn wfn 5249  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  +gcplusg 12695  .rcmulr 12696  0gc0g 12867  mulGrpcmgp 13416  1rcur 13455  Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-ur 13456  df-ring 13494
This theorem is referenced by:  unitgrpid  13614
  Copyright terms: Public domain W3C validator