![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgnnsubcl | GIF version |
Description: Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
mulgnnsubcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 998 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℕ) | |
2 | mulgnnsubcl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
3 | 2 | 3ad2ant1 1018 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
4 | simp3 999 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
5 | 3, 4 | sseldd 3156 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
6 | mulgnnsubcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
7 | mulgnnsubcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
8 | mulgnnsubcl.t | . . . 4 ⊢ · = (.g‘𝐺) | |
9 | eqid 2177 | . . . 4 ⊢ seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋})) | |
10 | 6, 7, 8, 9 | mulgnn 12875 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
11 | 1, 5, 10 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
12 | nnuz 9549 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
13 | 1zzd 9266 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 1 ∈ ℤ) | |
14 | fvconst2g 5726 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋) | |
15 | 4, 14 | sylan 283 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
16 | simpl3 1002 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → 𝑋 ∈ 𝑆) | |
17 | 15, 16 | eqeltrd 2254 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) ∈ 𝑆) |
18 | mulgnnsubcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
19 | 18 | 3expb 1204 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
20 | 19 | 3ad2antl1 1159 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
21 | 12, 13, 17, 20 | seqf 10444 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → seq1( + , (ℕ × {𝑋})):ℕ⟶𝑆) |
22 | 21, 1 | ffvelcdmd 5648 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (seq1( + , (ℕ × {𝑋}))‘𝑁) ∈ 𝑆) |
23 | 11, 22 | eqeltrd 2254 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⊆ wss 3129 {csn 3591 × cxp 4621 ‘cfv 5212 (class class class)co 5869 1c1 7800 ℕcn 8905 seqcseq 10428 Basecbs 12442 +gcplusg 12515 .gcmg 12869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7890 ax-resscn 7891 ax-1cn 7892 ax-1re 7893 ax-icn 7894 ax-addcl 7895 ax-addrcl 7896 ax-mulcl 7897 ax-addcom 7899 ax-addass 7901 ax-distr 7903 ax-i2m1 7904 ax-0lt1 7905 ax-0id 7907 ax-rnegex 7908 ax-cnre 7910 ax-pre-ltirr 7911 ax-pre-ltwlin 7912 ax-pre-lttrn 7913 ax-pre-ltadd 7915 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-pnf 7981 df-mnf 7982 df-xr 7983 df-ltxr 7984 df-le 7985 df-sub 8117 df-neg 8118 df-inn 8906 df-2 8964 df-n0 9163 df-z 9240 df-uz 9515 df-seqfrec 10429 df-ndx 12445 df-slot 12446 df-base 12448 df-plusg 12528 df-0g 12652 df-minusg 12768 df-mulg 12870 |
This theorem is referenced by: mulgnn0subcl 12882 mulgsubcl 12883 mulgnncl 12884 |
Copyright terms: Public domain | W3C validator |