| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnnsubcl | GIF version | ||
| Description: Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
| mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
| mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mulgnnsubcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℕ) | |
| 2 | mulgnnsubcl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 3 | 2 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
| 4 | simp3 1001 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 5 | 3, 4 | sseldd 3185 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 6 | mulgnnsubcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | mulgnnsubcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 8 | mulgnnsubcl.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 9 | eqid 2196 | . . . 4 ⊢ seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋})) | |
| 10 | 6, 7, 8, 9 | mulgnn 13332 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
| 11 | 1, 5, 10 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
| 12 | nnuz 9654 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 13 | 1zzd 9370 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 1 ∈ ℤ) | |
| 14 | fvconst2g 5779 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋) | |
| 15 | 4, 14 | sylan 283 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
| 16 | simpl3 1004 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → 𝑋 ∈ 𝑆) | |
| 17 | 15, 16 | eqeltrd 2273 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) ∈ 𝑆) |
| 18 | mulgnnsubcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 19 | 18 | 3expb 1206 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 20 | 19 | 3ad2antl1 1161 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 21 | 12, 13, 17, 20 | seqf 10573 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → seq1( + , (ℕ × {𝑋})):ℕ⟶𝑆) |
| 22 | 21, 1 | ffvelcdmd 5701 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (seq1( + , (ℕ × {𝑋}))‘𝑁) ∈ 𝑆) |
| 23 | 11, 22 | eqeltrd 2273 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 {csn 3623 × cxp 4662 ‘cfv 5259 (class class class)co 5925 1c1 7897 ℕcn 9007 seqcseq 10556 Basecbs 12703 +gcplusg 12780 .gcmg 13325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-minusg 13206 df-mulg 13326 |
| This theorem is referenced by: mulgnn0subcl 13341 mulgsubcl 13342 mulgnncl 13343 |
| Copyright terms: Public domain | W3C validator |