| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusaddvallemg | GIF version | ||
| Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
| qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| qusaddflem.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| qusaddflem.g | ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
| qusaddflemg.x | ⊢ (𝜑 → · ∈ 𝑊) |
| Ref | Expression |
|---|---|
| qusaddvallemg | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u | . . . 4 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusaddf.v | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | qusaddflem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 4 | qusaddf.r | . . . . 5 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 5 | qusaddf.z | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 6 | basfn 13005 | . . . . . . . 8 ⊢ Base Fn V | |
| 7 | elex 2788 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝑍 → 𝑅 ∈ V) | |
| 8 | funfvex 5616 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 9 | 8 | funfni 5395 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 10 | 6, 7, 9 | sylancr 414 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑍 → (Base‘𝑅) ∈ V) |
| 11 | 5, 10 | syl 14 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 12 | 2, 11 | eqeltrd 2284 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
| 13 | erex 6667 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
| 14 | 4, 12, 13 | sylc 62 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
| 15 | 1, 2, 3, 14, 5 | quslem 13271 | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| 16 | qusaddf.c | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 17 | qusaddf.e | . . . 4 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
| 18 | 4, 12, 3, 16, 17 | ercpbl 13278 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
| 19 | qusaddflem.g | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | |
| 20 | qusaddflemg.x | . . 3 ⊢ (𝜑 → · ∈ 𝑊) | |
| 21 | 15, 18, 19, 12, 20 | imasaddvallemg 13262 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
| 22 | 4 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∼ Er 𝑉) |
| 23 | 12 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑉 ∈ V) |
| 24 | simp2 1001 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 25 | 22, 23, 3, 24 | divsfvalg 13276 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐹‘𝑋) = [𝑋] ∼ ) |
| 26 | simp3 1002 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
| 27 | 22, 23, 3, 26 | divsfvalg 13276 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐹‘𝑌) = [𝑌] ∼ ) |
| 28 | 25, 27 | oveq12d 5985 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = ([𝑋] ∼ ∙ [𝑌] ∼ )) |
| 29 | 16 | 3ad2antl1 1162 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| 30 | 29, 24, 26 | caovcld 6123 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
| 31 | 22, 23, 3, 30 | divsfvalg 13276 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐹‘(𝑋 · 𝑌)) = [(𝑋 · 𝑌)] ∼ ) |
| 32 | 21, 28, 31 | 3eqtr3d 2248 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 Vcvv 2776 {csn 3643 〈cop 3646 ∪ ciun 3941 class class class wbr 4059 ↦ cmpt 4121 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 Er wer 6640 [cec 6641 / cqs 6642 Basecbs 12947 /s cqus 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-er 6643 df-ec 6645 df-qs 6649 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 |
| This theorem is referenced by: qusaddval 13282 qusmulval 13284 |
| Copyright terms: Public domain | W3C validator |