![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusaddvallemg | GIF version |
Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
qusaddf.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusaddf.r | ⊢ (𝜑 → ∼ Er 𝑉) |
qusaddf.z | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
qusaddf.e | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
qusaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
qusaddflem.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusaddflem.g | ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
qusaddflemg.x | ⊢ (𝜑 → · ∈ 𝑊) |
Ref | Expression |
---|---|
qusaddvallemg | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusaddf.u | . . . 4 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusaddf.v | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | qusaddflem.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
4 | qusaddf.r | . . . . 5 ⊢ (𝜑 → ∼ Er 𝑉) | |
5 | qusaddf.z | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
6 | basfn 12534 | . . . . . . . 8 ⊢ Base Fn V | |
7 | elex 2760 | . . . . . . . 8 ⊢ (𝑅 ∈ 𝑍 → 𝑅 ∈ V) | |
8 | funfvex 5544 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
9 | 8 | funfni 5328 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
10 | 6, 7, 9 | sylancr 414 | . . . . . . 7 ⊢ (𝑅 ∈ 𝑍 → (Base‘𝑅) ∈ V) |
11 | 5, 10 | syl 14 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
12 | 2, 11 | eqeltrd 2264 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ V) |
13 | erex 6573 | . . . . 5 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
14 | 4, 12, 13 | sylc 62 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
15 | 1, 2, 3, 14, 5 | quslem 12763 | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
16 | qusaddf.c | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
17 | qusaddf.e | . . . 4 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
18 | 4, 12, 3, 16, 17 | ercpbl 12769 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
19 | qusaddflem.g | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | |
20 | qusaddflemg.x | . . 3 ⊢ (𝜑 → · ∈ 𝑊) | |
21 | 15, 18, 19, 12, 20 | imasaddvallemg 12754 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) |
22 | 4 | 3ad2ant1 1019 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∼ Er 𝑉) |
23 | 12 | 3ad2ant1 1019 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑉 ∈ V) |
24 | simp2 999 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
25 | 22, 23, 3, 24 | divsfvalg 12767 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐹‘𝑋) = [𝑋] ∼ ) |
26 | simp3 1000 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
27 | 22, 23, 3, 26 | divsfvalg 12767 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐹‘𝑌) = [𝑌] ∼ ) |
28 | 25, 27 | oveq12d 5906 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐹‘𝑋) ∙ (𝐹‘𝑌)) = ([𝑋] ∼ ∙ [𝑌] ∼ )) |
29 | 16 | 3ad2antl1 1160 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
30 | 29, 24, 26 | caovcld 6042 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
31 | 22, 23, 3, 30 | divsfvalg 12767 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐹‘(𝑋 · 𝑌)) = [(𝑋 · 𝑌)] ∼ ) |
32 | 21, 28, 31 | 3eqtr3d 2228 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 Vcvv 2749 {csn 3604 〈cop 3607 ∪ ciun 3898 class class class wbr 4015 ↦ cmpt 4076 Fn wfn 5223 ‘cfv 5228 (class class class)co 5888 Er wer 6546 [cec 6547 / cqs 6548 Basecbs 12476 /s cqus 12739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7916 ax-resscn 7917 ax-1re 7919 ax-addrcl 7922 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-er 6549 df-ec 6551 df-qs 6555 df-inn 8934 df-ndx 12479 df-slot 12480 df-base 12482 |
This theorem is referenced by: qusaddval 12773 qusmulval 12775 |
Copyright terms: Public domain | W3C validator |