ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocpr GIF version

Theorem addlocpr 7537
Description: Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 7504 to both 𝐴 and 𝐵, and uses nqtri3or 7397 rather than prloc 7492 to decide whether 𝑞 is too big to be in the lower cut of 𝐴 +P 𝐵 (and deduce that if it is, then 𝑟 must be in the upper cut). What the two proofs have in common is that they take the difference between 𝑞 and 𝑟 to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addlocpr ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
Distinct variable groups:   𝐴,𝑞,𝑟   𝐵,𝑞,𝑟

Proof of Theorem addlocpr
Dummy variables 𝑑 𝑒 𝑝 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqq 7409 . . . . . 6 ((𝑞Q𝑟Q) → (𝑞 <Q 𝑟 ↔ ∃𝑝Q (𝑞 +Q 𝑝) = 𝑟))
21biimpa 296 . . . . 5 (((𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) → ∃𝑝Q (𝑞 +Q 𝑝) = 𝑟)
323adant1 1015 . . . 4 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) → ∃𝑝Q (𝑞 +Q 𝑝) = 𝑟)
4 halfnqq 7411 . . . . . 6 (𝑝Q → ∃Q ( +Q ) = 𝑝)
54ad2antrl 490 . . . . 5 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) → ∃Q ( +Q ) = 𝑝)
6 prop 7476 . . . . . . . . . 10 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prarloc 7504 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ PQ) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
86, 7sylan 283 . . . . . . . . 9 ((𝐴PQ) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
98adantlr 477 . . . . . . . 8 (((𝐴P𝐵P) ∧ Q) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
1093ad2antl1 1159 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ Q) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
1110ad2ant2r 509 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
12 prop 7476 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
13 prarloc 7504 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ PQ) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1412, 13sylan 283 . . . . . . . . . . . . 13 ((𝐵PQ) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1514adantll 476 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ Q) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
16153ad2antl1 1159 . . . . . . . . . . 11 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ Q) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1716ad2ant2r 509 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1817adantr 276 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
19 simpll1 1036 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝐴P𝐵P))
2019ad2antrr 488 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → (𝐴P𝐵P))
2120simpld 112 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝐴P)
2220simprd 114 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝐵P)
23 simpll3 1038 . . . . . . . . . . . . 13 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → 𝑞 <Q 𝑟)
2423ad2antrr 488 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑞 <Q 𝑟)
25 simplrl 535 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → Q)
2625adantr 276 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → Q)
27 simplrr 536 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝑞 +Q 𝑝) = 𝑟)
28 oveq2 5885 . . . . . . . . . . . . . . . 16 (( +Q ) = 𝑝 → (𝑞 +Q ( +Q )) = (𝑞 +Q 𝑝))
2928eqeq1d 2186 . . . . . . . . . . . . . . 15 (( +Q ) = 𝑝 → ((𝑞 +Q ( +Q )) = 𝑟 ↔ (𝑞 +Q 𝑝) = 𝑟))
3029ad2antll 491 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → ((𝑞 +Q ( +Q )) = 𝑟 ↔ (𝑞 +Q 𝑝) = 𝑟))
3127, 30mpbird 167 . . . . . . . . . . . . 13 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝑞 +Q ( +Q )) = 𝑟)
3231ad2antrr 488 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → (𝑞 +Q ( +Q )) = 𝑟)
33 simprll 537 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → 𝑑 ∈ (1st𝐴))
3433adantr 276 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑑 ∈ (1st𝐴))
35 simprlr 538 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → 𝑢 ∈ (2nd𝐴))
3635adantr 276 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑢 ∈ (2nd𝐴))
37 simplrr 536 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑢 <Q (𝑑 +Q ))
38 simprll 537 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑒 ∈ (1st𝐵))
39 simprlr 538 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑡 ∈ (2nd𝐵))
40 simprr 531 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑡 <Q (𝑒 +Q ))
4121, 22, 24, 26, 32, 34, 36, 37, 38, 39, 40addlocprlem 7536 . . . . . . . . . . 11 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
4241expr 375 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ (𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵))) → (𝑡 <Q (𝑒 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4342rexlimdvva 2602 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → (∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4418, 43mpd 13 . . . . . . . 8 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
4544expr 375 . . . . . . 7 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑢 <Q (𝑑 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4645rexlimdvva 2602 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4711, 46mpd 13 . . . . 5 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
485, 47rexlimddv 2599 . . . 4 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
493, 48rexlimddv 2599 . . 3 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
50493expia 1205 . 2 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
5150ralrimivva 2559 1 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456  cop 3597   class class class wbr 4005  cfv 5218  (class class class)co 5877  1st c1st 6141  2nd c2nd 6142  Qcnq 7281   +Q cplq 7283   <Q cltq 7286  Pcnp 7292   +P cpp 7294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469
This theorem is referenced by:  addclpr  7538
  Copyright terms: Public domain W3C validator