ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocpr GIF version

Theorem addlocpr 7596
Description: Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 7563 to both 𝐴 and 𝐵, and uses nqtri3or 7456 rather than prloc 7551 to decide whether 𝑞 is too big to be in the lower cut of 𝐴 +P 𝐵 (and deduce that if it is, then 𝑟 must be in the upper cut). What the two proofs have in common is that they take the difference between 𝑞 and 𝑟 to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addlocpr ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
Distinct variable groups:   𝐴,𝑞,𝑟   𝐵,𝑞,𝑟

Proof of Theorem addlocpr
Dummy variables 𝑑 𝑒 𝑝 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqq 7468 . . . . . 6 ((𝑞Q𝑟Q) → (𝑞 <Q 𝑟 ↔ ∃𝑝Q (𝑞 +Q 𝑝) = 𝑟))
21biimpa 296 . . . . 5 (((𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) → ∃𝑝Q (𝑞 +Q 𝑝) = 𝑟)
323adant1 1017 . . . 4 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) → ∃𝑝Q (𝑞 +Q 𝑝) = 𝑟)
4 halfnqq 7470 . . . . . 6 (𝑝Q → ∃Q ( +Q ) = 𝑝)
54ad2antrl 490 . . . . 5 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) → ∃Q ( +Q ) = 𝑝)
6 prop 7535 . . . . . . . . . 10 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prarloc 7563 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ PQ) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
86, 7sylan 283 . . . . . . . . 9 ((𝐴PQ) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
98adantlr 477 . . . . . . . 8 (((𝐴P𝐵P) ∧ Q) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
1093ad2antl1 1161 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ Q) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
1110ad2ant2r 509 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
12 prop 7535 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
13 prarloc 7563 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ PQ) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1412, 13sylan 283 . . . . . . . . . . . . 13 ((𝐵PQ) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1514adantll 476 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ Q) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
16153ad2antl1 1161 . . . . . . . . . . 11 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ Q) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1716ad2ant2r 509 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1817adantr 276 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
19 simpll1 1038 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝐴P𝐵P))
2019ad2antrr 488 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → (𝐴P𝐵P))
2120simpld 112 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝐴P)
2220simprd 114 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝐵P)
23 simpll3 1040 . . . . . . . . . . . . 13 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → 𝑞 <Q 𝑟)
2423ad2antrr 488 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑞 <Q 𝑟)
25 simplrl 535 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → Q)
2625adantr 276 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → Q)
27 simplrr 536 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝑞 +Q 𝑝) = 𝑟)
28 oveq2 5926 . . . . . . . . . . . . . . . 16 (( +Q ) = 𝑝 → (𝑞 +Q ( +Q )) = (𝑞 +Q 𝑝))
2928eqeq1d 2202 . . . . . . . . . . . . . . 15 (( +Q ) = 𝑝 → ((𝑞 +Q ( +Q )) = 𝑟 ↔ (𝑞 +Q 𝑝) = 𝑟))
3029ad2antll 491 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → ((𝑞 +Q ( +Q )) = 𝑟 ↔ (𝑞 +Q 𝑝) = 𝑟))
3127, 30mpbird 167 . . . . . . . . . . . . 13 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝑞 +Q ( +Q )) = 𝑟)
3231ad2antrr 488 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → (𝑞 +Q ( +Q )) = 𝑟)
33 simprll 537 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → 𝑑 ∈ (1st𝐴))
3433adantr 276 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑑 ∈ (1st𝐴))
35 simprlr 538 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → 𝑢 ∈ (2nd𝐴))
3635adantr 276 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑢 ∈ (2nd𝐴))
37 simplrr 536 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑢 <Q (𝑑 +Q ))
38 simprll 537 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑒 ∈ (1st𝐵))
39 simprlr 538 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑡 ∈ (2nd𝐵))
40 simprr 531 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑡 <Q (𝑒 +Q ))
4121, 22, 24, 26, 32, 34, 36, 37, 38, 39, 40addlocprlem 7595 . . . . . . . . . . 11 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
4241expr 375 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ (𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵))) → (𝑡 <Q (𝑒 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4342rexlimdvva 2619 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → (∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4418, 43mpd 13 . . . . . . . 8 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
4544expr 375 . . . . . . 7 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑢 <Q (𝑑 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4645rexlimdvva 2619 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4711, 46mpd 13 . . . . 5 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
485, 47rexlimddv 2616 . . . 4 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
493, 48rexlimddv 2616 . . 3 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
50493expia 1207 . 2 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
5150ralrimivva 2576 1 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  cop 3621   class class class wbr 4029  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   +Q cplq 7342   <Q cltq 7345  Pcnp 7351   +P cpp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528
This theorem is referenced by:  addclpr  7597
  Copyright terms: Public domain W3C validator