ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfap0 GIF version

Theorem prodfap0 12022
Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfap0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
prodfap0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)
Assertion
Ref Expression
prodfap0 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem prodfap0
Dummy variables 𝑛 𝑣 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10196 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5603 . . . . 5 (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀))
54breq1d 4072 . . . 4 (𝑚 = 𝑀 → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘𝑀) # 0))
65imbi2d 230 . . 3 (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) # 0)))
7 fveq2 5603 . . . . 5 (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛))
87breq1d 4072 . . . 4 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) # 0))
98imbi2d 230 . . 3 (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) # 0)))
10 fveq2 5603 . . . . 5 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
1110breq1d 4072 . . . 4 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0))
1211imbi2d 230 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
13 fveq2 5603 . . . . 5 (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁))
1413breq1d 4072 . . . 4 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) # 0))
1514imbi2d 230 . . 3 (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)))
16 eluzfz1 10195 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
17 elfzelz 10189 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
1817adantl 277 . . . . . . 7 ((𝜑𝑀 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
19 prodfap0.2 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
2019adantlr 477 . . . . . . 7 (((𝜑𝑀 ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
21 mulcl 8094 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ)
2221adantl 277 . . . . . . 7 (((𝜑𝑀 ∈ (𝑀...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
2318, 20, 22seq3-1 10651 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
24 fveq2 5603 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2524breq1d 4072 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) # 0 ↔ (𝐹𝑀) # 0))
2625imbi2d 230 . . . . . . . 8 (𝑘 = 𝑀 → ((𝜑 → (𝐹𝑘) # 0) ↔ (𝜑 → (𝐹𝑀) # 0)))
27 prodfap0.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)
2827expcom 116 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) # 0))
2926, 28vtoclga 2847 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑀) # 0))
3029impcom 125 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (𝐹𝑀) # 0)
3123, 30eqbrtrd 4084 . . . . 5 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) # 0)
3231expcom 116 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) # 0))
3316, 32syl 14 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) # 0))
34 elfzouz 10315 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
35343ad2ant2 1024 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → 𝑛 ∈ (ℤ𝑀))
36193ad2antl1 1164 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3721adantl 277 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
3835, 36, 37seq3p1 10654 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
39 elfzofz 10327 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (𝑀...𝑁))
40 elfzuz 10185 . . . . . . . . . . 11 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
41 eqid 2209 . . . . . . . . . . . . 13 (ℤ𝑀) = (ℤ𝑀)
421, 16, 173syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
4341, 42, 19prodf 12015 . . . . . . . . . . . 12 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
4443ffvelcdmda 5743 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
4540, 44sylan2 286 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
4639, 45sylan2 286 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
47463adant3 1022 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
48 fzofzp1 10400 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
49 fveq2 5603 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
5049eleq1d 2278 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
5150imbi2d 230 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)))
52 elfzuz 10185 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
5319expcom 116 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (𝐹𝑘) ∈ ℂ))
5452, 53syl 14 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ∈ ℂ))
5551, 54vtoclga 2847 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5648, 55syl 14 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5756impcom 125 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
58573adant3 1022 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
59 simp3 1004 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘𝑛) # 0)
6049breq1d 4072 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) # 0 ↔ (𝐹‘(𝑛 + 1)) # 0))
6160imbi2d 230 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) # 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) # 0)))
6261, 28vtoclga 2847 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) # 0))
6362impcom 125 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) # 0)
6448, 63sylan2 286 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) # 0)
65643adant3 1022 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (𝐹‘(𝑛 + 1)) # 0)
6647, 58, 59, 65mulap0d 8773 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) # 0)
6738, 66eqbrtrd 4084 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)
68673exp 1207 . . . . 5 (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐹)‘𝑛) # 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
6968com12 30 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) # 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
7069a2d 26 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) # 0) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
716, 9, 12, 15, 33, 70fzind2 10412 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0))
723, 71mpcom 36 1 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   # cap 8696  cz 9414  cuz 9690  ...cfz 10172  ..^cfzo 10306  seqcseq 10636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307  df-seqfrec 10637
This theorem is referenced by:  prodfrecap  12023  prodfdivap  12024
  Copyright terms: Public domain W3C validator