ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfap0 GIF version

Theorem prodfap0 11727
Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfap0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
prodfap0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)
Assertion
Ref Expression
prodfap0 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem prodfap0
Dummy variables 𝑛 𝑣 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10124 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5561 . . . . 5 (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀))
54breq1d 4044 . . . 4 (𝑚 = 𝑀 → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘𝑀) # 0))
65imbi2d 230 . . 3 (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) # 0)))
7 fveq2 5561 . . . . 5 (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛))
87breq1d 4044 . . . 4 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) # 0))
98imbi2d 230 . . 3 (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) # 0)))
10 fveq2 5561 . . . . 5 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
1110breq1d 4044 . . . 4 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0))
1211imbi2d 230 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
13 fveq2 5561 . . . . 5 (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁))
1413breq1d 4044 . . . 4 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) # 0))
1514imbi2d 230 . . 3 (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)))
16 eluzfz1 10123 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
17 elfzelz 10117 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
1817adantl 277 . . . . . . 7 ((𝜑𝑀 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
19 prodfap0.2 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
2019adantlr 477 . . . . . . 7 (((𝜑𝑀 ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
21 mulcl 8023 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ)
2221adantl 277 . . . . . . 7 (((𝜑𝑀 ∈ (𝑀...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
2318, 20, 22seq3-1 10571 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
24 fveq2 5561 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2524breq1d 4044 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) # 0 ↔ (𝐹𝑀) # 0))
2625imbi2d 230 . . . . . . . 8 (𝑘 = 𝑀 → ((𝜑 → (𝐹𝑘) # 0) ↔ (𝜑 → (𝐹𝑀) # 0)))
27 prodfap0.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)
2827expcom 116 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) # 0))
2926, 28vtoclga 2830 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑀) # 0))
3029impcom 125 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (𝐹𝑀) # 0)
3123, 30eqbrtrd 4056 . . . . 5 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) # 0)
3231expcom 116 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) # 0))
3316, 32syl 14 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) # 0))
34 elfzouz 10243 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
35343ad2ant2 1021 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → 𝑛 ∈ (ℤ𝑀))
36193ad2antl1 1161 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3721adantl 277 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
3835, 36, 37seq3p1 10574 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
39 elfzofz 10255 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (𝑀...𝑁))
40 elfzuz 10113 . . . . . . . . . . 11 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
41 eqid 2196 . . . . . . . . . . . . 13 (ℤ𝑀) = (ℤ𝑀)
421, 16, 173syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
4341, 42, 19prodf 11720 . . . . . . . . . . . 12 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
4443ffvelcdmda 5700 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
4540, 44sylan2 286 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
4639, 45sylan2 286 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
47463adant3 1019 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
48 fzofzp1 10320 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
49 fveq2 5561 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
5049eleq1d 2265 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
5150imbi2d 230 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)))
52 elfzuz 10113 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
5319expcom 116 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (𝐹𝑘) ∈ ℂ))
5452, 53syl 14 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ∈ ℂ))
5551, 54vtoclga 2830 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5648, 55syl 14 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5756impcom 125 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
58573adant3 1019 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
59 simp3 1001 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘𝑛) # 0)
6049breq1d 4044 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) # 0 ↔ (𝐹‘(𝑛 + 1)) # 0))
6160imbi2d 230 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) # 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) # 0)))
6261, 28vtoclga 2830 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) # 0))
6362impcom 125 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) # 0)
6448, 63sylan2 286 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) # 0)
65643adant3 1019 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (𝐹‘(𝑛 + 1)) # 0)
6647, 58, 59, 65mulap0d 8702 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) # 0)
6738, 66eqbrtrd 4056 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)
68673exp 1204 . . . . 5 (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐹)‘𝑛) # 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
6968com12 30 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) # 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
7069a2d 26 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) # 0) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
716, 9, 12, 15, 33, 70fzind2 10332 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0))
723, 71mpcom 36 1 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   # cap 8625  cz 9343  cuz 9618  ...cfz 10100  ..^cfzo 10234  seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557
This theorem is referenced by:  prodfrecap  11728  prodfdivap  11729
  Copyright terms: Public domain W3C validator