ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfap0 GIF version

Theorem prodfap0 11486
Description: The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
Hypotheses
Ref Expression
prodfap0.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfap0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
prodfap0.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)
Assertion
Ref Expression
prodfap0 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem prodfap0
Dummy variables 𝑛 𝑣 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfap0.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9967 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5486 . . . . 5 (𝑚 = 𝑀 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑀))
54breq1d 3992 . . . 4 (𝑚 = 𝑀 → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘𝑀) # 0))
65imbi2d 229 . . 3 (𝑚 = 𝑀 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) # 0)))
7 fveq2 5486 . . . . 5 (𝑚 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑛))
87breq1d 3992 . . . 4 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) # 0))
98imbi2d 229 . . 3 (𝑚 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) # 0)))
10 fveq2 5486 . . . . 5 (𝑚 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
1110breq1d 3992 . . . 4 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0))
1211imbi2d 229 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
13 fveq2 5486 . . . . 5 (𝑚 = 𝑁 → (seq𝑀( · , 𝐹)‘𝑚) = (seq𝑀( · , 𝐹)‘𝑁))
1413breq1d 3992 . . . 4 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) # 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) # 0))
1514imbi2d 229 . . 3 (𝑚 = 𝑁 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑚) # 0) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)))
16 eluzfz1 9966 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
17 elfzelz 9960 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
1817adantl 275 . . . . . . 7 ((𝜑𝑀 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
19 prodfap0.2 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
2019adantlr 469 . . . . . . 7 (((𝜑𝑀 ∈ (𝑀...𝑁)) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
21 mulcl 7880 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ)
2221adantl 275 . . . . . . 7 (((𝜑𝑀 ∈ (𝑀...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
2318, 20, 22seq3-1 10395 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) = (𝐹𝑀))
24 fveq2 5486 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2524breq1d 3992 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) # 0 ↔ (𝐹𝑀) # 0))
2625imbi2d 229 . . . . . . . 8 (𝑘 = 𝑀 → ((𝜑 → (𝐹𝑘) # 0) ↔ (𝜑 → (𝐹𝑀) # 0)))
27 prodfap0.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)
2827expcom 115 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) # 0))
2926, 28vtoclga 2792 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑀) # 0))
3029impcom 124 . . . . . 6 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (𝐹𝑀) # 0)
3123, 30eqbrtrd 4004 . . . . 5 ((𝜑𝑀 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑀) # 0)
3231expcom 115 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) # 0))
3316, 32syl 14 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑀) # 0))
34 elfzouz 10086 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
35343ad2ant2 1009 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → 𝑛 ∈ (ℤ𝑀))
36193ad2antl1 1149 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3721adantl 275 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
3835, 36, 37seq3p1 10397 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
39 elfzofz 10097 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (𝑀...𝑁))
40 elfzuz 9956 . . . . . . . . . . 11 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
41 eqid 2165 . . . . . . . . . . . . 13 (ℤ𝑀) = (ℤ𝑀)
421, 16, 173syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
4341, 42, 19prodf 11479 . . . . . . . . . . . 12 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
4443ffvelrnda 5620 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
4540, 44sylan2 284 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
4639, 45sylan2 284 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
47463adant3 1007 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘𝑛) ∈ ℂ)
48 fzofzp1 10162 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
49 fveq2 5486 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
5049eleq1d 2235 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
5150imbi2d 229 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℂ) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ)))
52 elfzuz 9956 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
5319expcom 115 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (𝐹𝑘) ∈ ℂ))
5452, 53syl 14 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...𝑁) → (𝜑 → (𝐹𝑘) ∈ ℂ))
5551, 54vtoclga 2792 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5648, 55syl 14 . . . . . . . . . 10 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) ∈ ℂ))
5756impcom 124 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
58573adant3 1007 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
59 simp3 989 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘𝑛) # 0)
6049breq1d 3992 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) # 0 ↔ (𝐹‘(𝑛 + 1)) # 0))
6160imbi2d 229 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝜑 → (𝐹𝑘) # 0) ↔ (𝜑 → (𝐹‘(𝑛 + 1)) # 0)))
6261, 28vtoclga 2792 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝜑 → (𝐹‘(𝑛 + 1)) # 0))
6362impcom 124 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑛 + 1)) # 0)
6448, 63sylan2 284 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) # 0)
65643adant3 1007 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (𝐹‘(𝑛 + 1)) # 0)
6647, 58, 59, 65mulap0d 8555 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) # 0)
6738, 66eqbrtrd 4004 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁) ∧ (seq𝑀( · , 𝐹)‘𝑛) # 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)
68673exp 1192 . . . . 5 (𝜑 → (𝑛 ∈ (𝑀..^𝑁) → ((seq𝑀( · , 𝐹)‘𝑛) # 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
6968com12 30 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) # 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
7069a2d 26 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) # 0) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) # 0)))
716, 9, 12, 15, 33, 70fzind2 10174 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0))
723, 71mpcom 36 1 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   # cap 8479  cz 9191  cuz 9466  ...cfz 9944  ..^cfzo 10077  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078  df-seqfrec 10381
This theorem is referenced by:  prodfrecap  11487  prodfdivap  11488
  Copyright terms: Public domain W3C validator