![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3brtr4d | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
3brtr4d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3brtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3brtr4d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
3 | 3brtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | breq12d 4042 | . 2 ⊢ (𝜑 → (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵)) |
5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 class class class wbr 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: f1oiso2 5870 prarloclemarch2 7479 caucvgprprlemmu 7755 caucvgsrlembound 7854 mulap0 8673 lediv12a 8913 recp1lt1 8918 xleadd1a 9939 fldiv4p1lem1div2 10374 fldiv4lem1div2 10376 intfracq 10391 modqmulnn 10413 addmodlteq 10469 frecfzennn 10497 monoord2 10557 expgt1 10648 leexp2r 10664 leexp1a 10665 bernneq 10731 faclbnd 10812 faclbnd6 10815 facubnd 10816 hashunlem 10875 zfz1isolemiso 10910 sqrtgt0 11178 absrele 11227 absimle 11228 abstri 11248 abs2difabs 11252 bdtrilem 11382 bdtri 11383 xrmaxifle 11389 xrmaxadd 11404 xrbdtri 11419 climsqz 11478 climsqz2 11479 fsum3cvg2 11537 isumle 11638 expcnvap0 11645 expcnvre 11646 explecnv 11648 cvgratz 11675 efcllemp 11801 ege2le3 11814 eflegeo 11844 cos12dec 11911 phibnd 12355 pcdvdstr 12465 pcprmpw2 12471 pockthg 12495 znrrg 14148 psmetres2 14501 xmetres2 14547 comet 14667 bdxmet 14669 cnmet 14698 ivthdec 14798 limcimolemlt 14818 tangtx 14973 logbgcd1irraplemap 15101 cvgcmp2nlemabs 15522 trilpolemlt1 15531 |
Copyright terms: Public domain | W3C validator |