| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3brtr4d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3brtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3brtr4d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 3 | 3brtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | breq12d 4095 | . 2 ⊢ (𝜑 → (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: f1oiso2 5950 prarloclemarch2 7602 caucvgprprlemmu 7878 caucvgsrlembound 7977 mulap0 8797 lediv12a 9037 recp1lt1 9042 xleadd1a 10065 fldiv4p1lem1div2 10520 fldiv4lem1div2 10522 intfracq 10537 modqmulnn 10559 addmodlteq 10615 frecfzennn 10643 monoord2 10703 expgt1 10794 leexp2r 10810 leexp1a 10811 bernneq 10877 faclbnd 10958 faclbnd6 10961 facubnd 10962 hashunlem 11021 zfz1isolemiso 11056 sqrtgt0 11540 absrele 11589 absimle 11590 abstri 11610 abs2difabs 11614 bdtrilem 11745 bdtri 11746 xrmaxifle 11752 xrmaxadd 11767 xrbdtri 11782 climsqz 11841 climsqz2 11842 fsum3cvg2 11900 isumle 12001 expcnvap0 12008 expcnvre 12009 explecnv 12011 cvgratz 12038 efcllemp 12164 ege2le3 12177 eflegeo 12207 cos12dec 12274 fsumdvds 12348 phibnd 12734 pcdvdstr 12845 pcprmpw2 12851 pockthg 12875 2expltfac 12957 znrrg 14618 psmetres2 15001 xmetres2 15047 comet 15167 bdxmet 15169 cnmet 15198 ivthdec 15312 limcimolemlt 15332 tangtx 15506 logbgcd1irraplemap 15637 2lgslem1c 15763 cvgcmp2nlemabs 16359 trilpolemlt1 16368 |
| Copyright terms: Public domain | W3C validator |