Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3brtr4d | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
3brtr4d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3brtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3brtr4d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
3 | 3brtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | breq12d 4002 | . 2 ⊢ (𝜑 → (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵)) |
5 | 1, 4 | mpbird 166 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: f1oiso2 5806 prarloclemarch2 7381 caucvgprprlemmu 7657 caucvgsrlembound 7756 mulap0 8572 lediv12a 8810 recp1lt1 8815 xleadd1a 9830 fldiv4p1lem1div2 10261 intfracq 10276 modqmulnn 10298 addmodlteq 10354 frecfzennn 10382 monoord2 10433 expgt1 10514 leexp2r 10530 leexp1a 10531 bernneq 10596 faclbnd 10675 faclbnd6 10678 facubnd 10679 hashunlem 10739 zfz1isolemiso 10774 sqrtgt0 10998 absrele 11047 absimle 11048 abstri 11068 abs2difabs 11072 bdtrilem 11202 bdtri 11203 xrmaxifle 11209 xrmaxadd 11224 xrbdtri 11239 climsqz 11298 climsqz2 11299 fsum3cvg2 11357 isumle 11458 expcnvap0 11465 expcnvre 11466 explecnv 11468 cvgratz 11495 efcllemp 11621 ege2le3 11634 eflegeo 11664 cos12dec 11730 phibnd 12171 pcdvdstr 12280 pcprmpw2 12286 pockthg 12309 psmetres2 13127 xmetres2 13173 comet 13293 bdxmet 13295 cnmet 13324 ivthdec 13416 limcimolemlt 13427 tangtx 13553 logbgcd1irraplemap 13681 cvgcmp2nlemabs 14064 trilpolemlt1 14073 |
Copyright terms: Public domain | W3C validator |