| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3brtr4d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3brtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3brtr4d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 3 | 3brtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | breq12d 4064 | . 2 ⊢ (𝜑 → (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 class class class wbr 4051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 |
| This theorem is referenced by: f1oiso2 5909 prarloclemarch2 7552 caucvgprprlemmu 7828 caucvgsrlembound 7927 mulap0 8747 lediv12a 8987 recp1lt1 8992 xleadd1a 10015 fldiv4p1lem1div2 10470 fldiv4lem1div2 10472 intfracq 10487 modqmulnn 10509 addmodlteq 10565 frecfzennn 10593 monoord2 10653 expgt1 10744 leexp2r 10760 leexp1a 10761 bernneq 10827 faclbnd 10908 faclbnd6 10911 facubnd 10912 hashunlem 10971 zfz1isolemiso 11006 sqrtgt0 11420 absrele 11469 absimle 11470 abstri 11490 abs2difabs 11494 bdtrilem 11625 bdtri 11626 xrmaxifle 11632 xrmaxadd 11647 xrbdtri 11662 climsqz 11721 climsqz2 11722 fsum3cvg2 11780 isumle 11881 expcnvap0 11888 expcnvre 11889 explecnv 11891 cvgratz 11918 efcllemp 12044 ege2le3 12057 eflegeo 12087 cos12dec 12154 fsumdvds 12228 phibnd 12614 pcdvdstr 12725 pcprmpw2 12731 pockthg 12755 2expltfac 12837 znrrg 14497 psmetres2 14880 xmetres2 14926 comet 15046 bdxmet 15048 cnmet 15077 ivthdec 15191 limcimolemlt 15211 tangtx 15385 logbgcd1irraplemap 15516 2lgslem1c 15642 cvgcmp2nlemabs 16112 trilpolemlt1 16121 |
| Copyright terms: Public domain | W3C validator |