Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3brtr4d | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
3brtr4d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3brtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3brtr4d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
3 | 3brtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | breq12d 3995 | . 2 ⊢ (𝜑 → (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵)) |
5 | 1, 4 | mpbird 166 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: f1oiso2 5795 prarloclemarch2 7360 caucvgprprlemmu 7636 caucvgsrlembound 7735 mulap0 8551 lediv12a 8789 recp1lt1 8794 xleadd1a 9809 fldiv4p1lem1div2 10240 intfracq 10255 modqmulnn 10277 addmodlteq 10333 frecfzennn 10361 monoord2 10412 expgt1 10493 leexp2r 10509 leexp1a 10510 bernneq 10575 faclbnd 10654 faclbnd6 10657 facubnd 10658 hashunlem 10717 zfz1isolemiso 10752 sqrtgt0 10976 absrele 11025 absimle 11026 abstri 11046 abs2difabs 11050 bdtrilem 11180 bdtri 11181 xrmaxifle 11187 xrmaxadd 11202 xrbdtri 11217 climsqz 11276 climsqz2 11277 fsum3cvg2 11335 isumle 11436 expcnvap0 11443 expcnvre 11444 explecnv 11446 cvgratz 11473 efcllemp 11599 ege2le3 11612 eflegeo 11642 cos12dec 11708 phibnd 12149 pcdvdstr 12258 pcprmpw2 12264 pockthg 12287 psmetres2 12973 xmetres2 13019 comet 13139 bdxmet 13141 cnmet 13170 ivthdec 13262 limcimolemlt 13273 tangtx 13399 logbgcd1irraplemap 13527 cvgcmp2nlemabs 13911 trilpolemlt1 13920 |
Copyright terms: Public domain | W3C validator |