| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3brtr4d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3brtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3brtr4d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 3 | 3brtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | breq12d 4056 | . 2 ⊢ (𝜑 → (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 class class class wbr 4043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 |
| This theorem is referenced by: f1oiso2 5886 prarloclemarch2 7514 caucvgprprlemmu 7790 caucvgsrlembound 7889 mulap0 8709 lediv12a 8949 recp1lt1 8954 xleadd1a 9977 fldiv4p1lem1div2 10429 fldiv4lem1div2 10431 intfracq 10446 modqmulnn 10468 addmodlteq 10524 frecfzennn 10552 monoord2 10612 expgt1 10703 leexp2r 10719 leexp1a 10720 bernneq 10786 faclbnd 10867 faclbnd6 10870 facubnd 10871 hashunlem 10930 zfz1isolemiso 10965 sqrtgt0 11264 absrele 11313 absimle 11314 abstri 11334 abs2difabs 11338 bdtrilem 11469 bdtri 11470 xrmaxifle 11476 xrmaxadd 11491 xrbdtri 11506 climsqz 11565 climsqz2 11566 fsum3cvg2 11624 isumle 11725 expcnvap0 11732 expcnvre 11733 explecnv 11735 cvgratz 11762 efcllemp 11888 ege2le3 11901 eflegeo 11931 cos12dec 11998 fsumdvds 12072 phibnd 12458 pcdvdstr 12569 pcprmpw2 12575 pockthg 12599 2expltfac 12681 znrrg 14340 psmetres2 14723 xmetres2 14769 comet 14889 bdxmet 14891 cnmet 14920 ivthdec 15034 limcimolemlt 15054 tangtx 15228 logbgcd1irraplemap 15359 2lgslem1c 15485 cvgcmp2nlemabs 15835 trilpolemlt1 15844 |
| Copyright terms: Public domain | W3C validator |