| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3brtr4d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3brtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3brtr4d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 3 | 3brtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | breq12d 4047 | . 2 ⊢ (𝜑 → (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: f1oiso2 5877 prarloclemarch2 7505 caucvgprprlemmu 7781 caucvgsrlembound 7880 mulap0 8700 lediv12a 8940 recp1lt1 8945 xleadd1a 9967 fldiv4p1lem1div2 10414 fldiv4lem1div2 10416 intfracq 10431 modqmulnn 10453 addmodlteq 10509 frecfzennn 10537 monoord2 10597 expgt1 10688 leexp2r 10704 leexp1a 10705 bernneq 10771 faclbnd 10852 faclbnd6 10855 facubnd 10856 hashunlem 10915 zfz1isolemiso 10950 sqrtgt0 11218 absrele 11267 absimle 11268 abstri 11288 abs2difabs 11292 bdtrilem 11423 bdtri 11424 xrmaxifle 11430 xrmaxadd 11445 xrbdtri 11460 climsqz 11519 climsqz2 11520 fsum3cvg2 11578 isumle 11679 expcnvap0 11686 expcnvre 11687 explecnv 11689 cvgratz 11716 efcllemp 11842 ege2le3 11855 eflegeo 11885 cos12dec 11952 fsumdvds 12026 phibnd 12412 pcdvdstr 12523 pcprmpw2 12529 pockthg 12553 2expltfac 12635 znrrg 14294 psmetres2 14677 xmetres2 14723 comet 14843 bdxmet 14845 cnmet 14874 ivthdec 14988 limcimolemlt 15008 tangtx 15182 logbgcd1irraplemap 15313 2lgslem1c 15439 cvgcmp2nlemabs 15789 trilpolemlt1 15798 |
| Copyright terms: Public domain | W3C validator |