![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3brtr4d | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
3brtr4d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3brtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3brtr4d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
3 | 3brtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | breq12d 4043 | . 2 ⊢ (𝜑 → (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵)) |
5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 class class class wbr 4030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: f1oiso2 5871 prarloclemarch2 7481 caucvgprprlemmu 7757 caucvgsrlembound 7856 mulap0 8675 lediv12a 8915 recp1lt1 8920 xleadd1a 9942 fldiv4p1lem1div2 10377 fldiv4lem1div2 10379 intfracq 10394 modqmulnn 10416 addmodlteq 10472 frecfzennn 10500 monoord2 10560 expgt1 10651 leexp2r 10667 leexp1a 10668 bernneq 10734 faclbnd 10815 faclbnd6 10818 facubnd 10819 hashunlem 10878 zfz1isolemiso 10913 sqrtgt0 11181 absrele 11230 absimle 11231 abstri 11251 abs2difabs 11255 bdtrilem 11385 bdtri 11386 xrmaxifle 11392 xrmaxadd 11407 xrbdtri 11422 climsqz 11481 climsqz2 11482 fsum3cvg2 11540 isumle 11641 expcnvap0 11648 expcnvre 11649 explecnv 11651 cvgratz 11678 efcllemp 11804 ege2le3 11817 eflegeo 11847 cos12dec 11914 phibnd 12358 pcdvdstr 12468 pcprmpw2 12474 pockthg 12498 znrrg 14159 psmetres2 14512 xmetres2 14558 comet 14678 bdxmet 14680 cnmet 14709 ivthdec 14823 limcimolemlt 14843 tangtx 15014 logbgcd1irraplemap 15142 2lgslem1c 15247 cvgcmp2nlemabs 15592 trilpolemlt1 15601 |
Copyright terms: Public domain | W3C validator |