Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3brtr4d | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
3brtr4d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3brtr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3brtr4d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
3 | 3brtr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | breq12d 4011 | . 2 ⊢ (𝜑 → (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵)) |
5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 class class class wbr 3998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 |
This theorem is referenced by: f1oiso2 5818 prarloclemarch2 7393 caucvgprprlemmu 7669 caucvgsrlembound 7768 mulap0 8584 lediv12a 8824 recp1lt1 8829 xleadd1a 9844 fldiv4p1lem1div2 10275 intfracq 10290 modqmulnn 10312 addmodlteq 10368 frecfzennn 10396 monoord2 10447 expgt1 10528 leexp2r 10544 leexp1a 10545 bernneq 10610 faclbnd 10689 faclbnd6 10692 facubnd 10693 hashunlem 10752 zfz1isolemiso 10787 sqrtgt0 11011 absrele 11060 absimle 11061 abstri 11081 abs2difabs 11085 bdtrilem 11215 bdtri 11216 xrmaxifle 11222 xrmaxadd 11237 xrbdtri 11252 climsqz 11311 climsqz2 11312 fsum3cvg2 11370 isumle 11471 expcnvap0 11478 expcnvre 11479 explecnv 11481 cvgratz 11508 efcllemp 11634 ege2le3 11647 eflegeo 11677 cos12dec 11743 phibnd 12184 pcdvdstr 12293 pcprmpw2 12299 pockthg 12322 psmetres2 13413 xmetres2 13459 comet 13579 bdxmet 13581 cnmet 13610 ivthdec 13702 limcimolemlt 13713 tangtx 13839 logbgcd1irraplemap 13967 cvgcmp2nlemabs 14350 trilpolemlt1 14359 |
Copyright terms: Public domain | W3C validator |