ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjusym GIF version

Theorem endjusym 7097
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
endjusym ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → (š“ āŠ” šµ) ā‰ˆ (šµ āŠ” š“))

Proof of Theorem endjusym
StepHypRef Expression
1 djulf1o 7059 . . . . . . . . 9 inl:V–1-1-onto→({āˆ…} Ɨ V)
2 f1of1 5462 . . . . . . . . 9 (inl:V–1-1-onto→({āˆ…} Ɨ V) → inl:V–1-1→({āˆ…} Ɨ V))
31, 2ax-mp 5 . . . . . . . 8 inl:V–1-1→({āˆ…} Ɨ V)
4 ssv 3179 . . . . . . . 8 š“ āŠ† V
5 f1ores 5478 . . . . . . . 8 ((inl:V–1-1→({āˆ…} Ɨ V) ∧ š“ āŠ† V) → (inl ↾ š“):š“ā€“1-1-onto→(inl ā€œ š“))
63, 4, 5mp2an 426 . . . . . . 7 (inl ↾ š“):š“ā€“1-1-onto→(inl ā€œ š“)
7 f1oeng 6759 . . . . . . 7 ((š“ ∈ š‘‰ ∧ (inl ↾ š“):š“ā€“1-1-onto→(inl ā€œ š“)) → š“ ā‰ˆ (inl ā€œ š“))
86, 7mpan2 425 . . . . . 6 (š“ ∈ š‘‰ → š“ ā‰ˆ (inl ā€œ š“))
98ensymd 6785 . . . . 5 (š“ ∈ š‘‰ → (inl ā€œ š“) ā‰ˆ š“)
10 djurf1o 7060 . . . . . . . 8 inr:V–1-1-onto→({1o} Ɨ V)
11 f1of1 5462 . . . . . . . 8 (inr:V–1-1-onto→({1o} Ɨ V) → inr:V–1-1→({1o} Ɨ V))
1210, 11ax-mp 5 . . . . . . 7 inr:V–1-1→({1o} Ɨ V)
13 f1ores 5478 . . . . . . 7 ((inr:V–1-1→({1o} Ɨ V) ∧ š“ āŠ† V) → (inr ↾ š“):š“ā€“1-1-onto→(inr ā€œ š“))
1412, 4, 13mp2an 426 . . . . . 6 (inr ↾ š“):š“ā€“1-1-onto→(inr ā€œ š“)
15 f1oeng 6759 . . . . . 6 ((š“ ∈ š‘‰ ∧ (inr ↾ š“):š“ā€“1-1-onto→(inr ā€œ š“)) → š“ ā‰ˆ (inr ā€œ š“))
1614, 15mpan2 425 . . . . 5 (š“ ∈ š‘‰ → š“ ā‰ˆ (inr ā€œ š“))
17 entr 6786 . . . . 5 (((inl ā€œ š“) ā‰ˆ š“ ∧ š“ ā‰ˆ (inr ā€œ š“)) → (inl ā€œ š“) ā‰ˆ (inr ā€œ š“))
189, 16, 17syl2anc 411 . . . 4 (š“ ∈ š‘‰ → (inl ā€œ š“) ā‰ˆ (inr ā€œ š“))
1918adantr 276 . . 3 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → (inl ā€œ š“) ā‰ˆ (inr ā€œ š“))
20 ssv 3179 . . . . . . . 8 šµ āŠ† V
21 f1ores 5478 . . . . . . . 8 ((inr:V–1-1→({1o} Ɨ V) ∧ šµ āŠ† V) → (inr ↾ šµ):šµā€“1-1-onto→(inr ā€œ šµ))
2212, 20, 21mp2an 426 . . . . . . 7 (inr ↾ šµ):šµā€“1-1-onto→(inr ā€œ šµ)
23 f1oeng 6759 . . . . . . 7 ((šµ ∈ š‘Š ∧ (inr ↾ šµ):šµā€“1-1-onto→(inr ā€œ šµ)) → šµ ā‰ˆ (inr ā€œ šµ))
2422, 23mpan2 425 . . . . . 6 (šµ ∈ š‘Š → šµ ā‰ˆ (inr ā€œ šµ))
2524adantl 277 . . . . 5 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → šµ ā‰ˆ (inr ā€œ šµ))
2625ensymd 6785 . . . 4 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → (inr ā€œ šµ) ā‰ˆ šµ)
27 f1ores 5478 . . . . . . 7 ((inl:V–1-1→({āˆ…} Ɨ V) ∧ šµ āŠ† V) → (inl ↾ šµ):šµā€“1-1-onto→(inl ā€œ šµ))
283, 20, 27mp2an 426 . . . . . 6 (inl ↾ šµ):šµā€“1-1-onto→(inl ā€œ šµ)
29 f1oeng 6759 . . . . . 6 ((šµ ∈ š‘Š ∧ (inl ↾ šµ):šµā€“1-1-onto→(inl ā€œ šµ)) → šµ ā‰ˆ (inl ā€œ šµ))
3028, 29mpan2 425 . . . . 5 (šµ ∈ š‘Š → šµ ā‰ˆ (inl ā€œ šµ))
3130adantl 277 . . . 4 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → šµ ā‰ˆ (inl ā€œ šµ))
32 entr 6786 . . . 4 (((inr ā€œ šµ) ā‰ˆ šµ ∧ šµ ā‰ˆ (inl ā€œ šµ)) → (inr ā€œ šµ) ā‰ˆ (inl ā€œ šµ))
3326, 31, 32syl2anc 411 . . 3 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → (inr ā€œ šµ) ā‰ˆ (inl ā€œ šµ))
34 djuin 7065 . . . 4 ((inl ā€œ š“) ∩ (inr ā€œ šµ)) = āˆ…
3534a1i 9 . . 3 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → ((inl ā€œ š“) ∩ (inr ā€œ šµ)) = āˆ…)
36 incom 3329 . . . . 5 ((inl ā€œ šµ) ∩ (inr ā€œ š“)) = ((inr ā€œ š“) ∩ (inl ā€œ šµ))
37 djuin 7065 . . . . 5 ((inl ā€œ šµ) ∩ (inr ā€œ š“)) = āˆ…
3836, 37eqtr3i 2200 . . . 4 ((inr ā€œ š“) ∩ (inl ā€œ šµ)) = āˆ…
3938a1i 9 . . 3 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → ((inr ā€œ š“) ∩ (inl ā€œ šµ)) = āˆ…)
40 unen 6818 . . 3 ((((inl ā€œ š“) ā‰ˆ (inr ā€œ š“) ∧ (inr ā€œ šµ) ā‰ˆ (inl ā€œ šµ)) ∧ (((inl ā€œ š“) ∩ (inr ā€œ šµ)) = āˆ… ∧ ((inr ā€œ š“) ∩ (inl ā€œ šµ)) = āˆ…)) → ((inl ā€œ š“) ∪ (inr ā€œ šµ)) ā‰ˆ ((inr ā€œ š“) ∪ (inl ā€œ šµ)))
4119, 33, 35, 39, 40syl22anc 1239 . 2 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → ((inl ā€œ š“) ∪ (inr ā€œ šµ)) ā‰ˆ ((inr ā€œ š“) ∪ (inl ā€œ šµ)))
42 djuun 7068 . 2 ((inl ā€œ š“) ∪ (inr ā€œ šµ)) = (š“ āŠ” šµ)
43 uncom 3281 . . 3 ((inr ā€œ š“) ∪ (inl ā€œ šµ)) = ((inl ā€œ šµ) ∪ (inr ā€œ š“))
44 djuun 7068 . . 3 ((inl ā€œ šµ) ∪ (inr ā€œ š“)) = (šµ āŠ” š“)
4543, 44eqtri 2198 . 2 ((inr ā€œ š“) ∪ (inl ā€œ šµ)) = (šµ āŠ” š“)
4641, 42, 453brtr3g 4038 1 ((š“ ∈ š‘‰ ∧ šµ ∈ š‘Š) → (š“ āŠ” šµ) ā‰ˆ (šµ āŠ” š“))
Colors of variables: wff set class
Syntax hints:   → wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  Vcvv 2739   ∪ cun 3129   ∩ cin 3130   āŠ† wss 3131  āˆ…c0 3424  {csn 3594   class class class wbr 4005   Ɨ cxp 4626   ↾ cres 4630   ā€œ cima 4631  ā€“1-1→wf1 5215  ā€“1-1-onto→wf1o 5217  1oc1o 6412   ā‰ˆ cen 6740   āŠ” cdju 7038  inlcinl 7046  inrcinr 7047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-er 6537  df-en 6743  df-dju 7039  df-inl 7048  df-inr 7049
This theorem is referenced by:  sbthom  14859
  Copyright terms: Public domain W3C validator