ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjusym GIF version

Theorem endjusym 7162
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
endjusym ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))

Proof of Theorem endjusym
StepHypRef Expression
1 djulf1o 7124 . . . . . . . . 9 inl:V–1-1-onto→({∅} × V)
2 f1of1 5503 . . . . . . . . 9 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
31, 2ax-mp 5 . . . . . . . 8 inl:V–1-1→({∅} × V)
4 ssv 3205 . . . . . . . 8 𝐴 ⊆ V
5 f1ores 5519 . . . . . . . 8 ((inl:V–1-1→({∅} × V) ∧ 𝐴 ⊆ V) → (inl ↾ 𝐴):𝐴1-1-onto→(inl “ 𝐴))
63, 4, 5mp2an 426 . . . . . . 7 (inl ↾ 𝐴):𝐴1-1-onto→(inl “ 𝐴)
7 f1oeng 6816 . . . . . . 7 ((𝐴𝑉 ∧ (inl ↾ 𝐴):𝐴1-1-onto→(inl “ 𝐴)) → 𝐴 ≈ (inl “ 𝐴))
86, 7mpan2 425 . . . . . 6 (𝐴𝑉𝐴 ≈ (inl “ 𝐴))
98ensymd 6842 . . . . 5 (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
10 djurf1o 7125 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
11 f1of1 5503 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1210, 11ax-mp 5 . . . . . . 7 inr:V–1-1→({1o} × V)
13 f1ores 5519 . . . . . . 7 ((inr:V–1-1→({1o} × V) ∧ 𝐴 ⊆ V) → (inr ↾ 𝐴):𝐴1-1-onto→(inr “ 𝐴))
1412, 4, 13mp2an 426 . . . . . 6 (inr ↾ 𝐴):𝐴1-1-onto→(inr “ 𝐴)
15 f1oeng 6816 . . . . . 6 ((𝐴𝑉 ∧ (inr ↾ 𝐴):𝐴1-1-onto→(inr “ 𝐴)) → 𝐴 ≈ (inr “ 𝐴))
1614, 15mpan2 425 . . . . 5 (𝐴𝑉𝐴 ≈ (inr “ 𝐴))
17 entr 6843 . . . . 5 (((inl “ 𝐴) ≈ 𝐴𝐴 ≈ (inr “ 𝐴)) → (inl “ 𝐴) ≈ (inr “ 𝐴))
189, 16, 17syl2anc 411 . . . 4 (𝐴𝑉 → (inl “ 𝐴) ≈ (inr “ 𝐴))
1918adantr 276 . . 3 ((𝐴𝑉𝐵𝑊) → (inl “ 𝐴) ≈ (inr “ 𝐴))
20 ssv 3205 . . . . . . . 8 𝐵 ⊆ V
21 f1ores 5519 . . . . . . . 8 ((inr:V–1-1→({1o} × V) ∧ 𝐵 ⊆ V) → (inr ↾ 𝐵):𝐵1-1-onto→(inr “ 𝐵))
2212, 20, 21mp2an 426 . . . . . . 7 (inr ↾ 𝐵):𝐵1-1-onto→(inr “ 𝐵)
23 f1oeng 6816 . . . . . . 7 ((𝐵𝑊 ∧ (inr ↾ 𝐵):𝐵1-1-onto→(inr “ 𝐵)) → 𝐵 ≈ (inr “ 𝐵))
2422, 23mpan2 425 . . . . . 6 (𝐵𝑊𝐵 ≈ (inr “ 𝐵))
2524adantl 277 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵 ≈ (inr “ 𝐵))
2625ensymd 6842 . . . 4 ((𝐴𝑉𝐵𝑊) → (inr “ 𝐵) ≈ 𝐵)
27 f1ores 5519 . . . . . . 7 ((inl:V–1-1→({∅} × V) ∧ 𝐵 ⊆ V) → (inl ↾ 𝐵):𝐵1-1-onto→(inl “ 𝐵))
283, 20, 27mp2an 426 . . . . . 6 (inl ↾ 𝐵):𝐵1-1-onto→(inl “ 𝐵)
29 f1oeng 6816 . . . . . 6 ((𝐵𝑊 ∧ (inl ↾ 𝐵):𝐵1-1-onto→(inl “ 𝐵)) → 𝐵 ≈ (inl “ 𝐵))
3028, 29mpan2 425 . . . . 5 (𝐵𝑊𝐵 ≈ (inl “ 𝐵))
3130adantl 277 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐵 ≈ (inl “ 𝐵))
32 entr 6843 . . . 4 (((inr “ 𝐵) ≈ 𝐵𝐵 ≈ (inl “ 𝐵)) → (inr “ 𝐵) ≈ (inl “ 𝐵))
3326, 31, 32syl2anc 411 . . 3 ((𝐴𝑉𝐵𝑊) → (inr “ 𝐵) ≈ (inl “ 𝐵))
34 djuin 7130 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
3534a1i 9 . . 3 ((𝐴𝑉𝐵𝑊) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅)
36 incom 3355 . . . . 5 ((inl “ 𝐵) ∩ (inr “ 𝐴)) = ((inr “ 𝐴) ∩ (inl “ 𝐵))
37 djuin 7130 . . . . 5 ((inl “ 𝐵) ∩ (inr “ 𝐴)) = ∅
3836, 37eqtr3i 2219 . . . 4 ((inr “ 𝐴) ∩ (inl “ 𝐵)) = ∅
3938a1i 9 . . 3 ((𝐴𝑉𝐵𝑊) → ((inr “ 𝐴) ∩ (inl “ 𝐵)) = ∅)
40 unen 6875 . . 3 ((((inl “ 𝐴) ≈ (inr “ 𝐴) ∧ (inr “ 𝐵) ≈ (inl “ 𝐵)) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ ((inr “ 𝐴) ∩ (inl “ 𝐵)) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ ((inr “ 𝐴) ∪ (inl “ 𝐵)))
4119, 33, 35, 39, 40syl22anc 1250 . 2 ((𝐴𝑉𝐵𝑊) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ ((inr “ 𝐴) ∪ (inl “ 𝐵)))
42 djuun 7133 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
43 uncom 3307 . . 3 ((inr “ 𝐴) ∪ (inl “ 𝐵)) = ((inl “ 𝐵) ∪ (inr “ 𝐴))
44 djuun 7133 . . 3 ((inl “ 𝐵) ∪ (inr “ 𝐴)) = (𝐵𝐴)
4543, 44eqtri 2217 . 2 ((inr “ 𝐴) ∪ (inl “ 𝐵)) = (𝐵𝐴)
4641, 42, 453brtr3g 4066 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  cin 3156  wss 3157  c0 3450  {csn 3622   class class class wbr 4033   × cxp 4661  cres 4665  cima 4666  1-1wf1 5255  1-1-ontowf1o 5257  1oc1o 6467  cen 6797  cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-er 6592  df-en 6800  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  sbthom  15670
  Copyright terms: Public domain W3C validator