ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjusym GIF version

Theorem endjusym 7061
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
endjusym ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))

Proof of Theorem endjusym
StepHypRef Expression
1 djulf1o 7023 . . . . . . . . 9 inl:V–1-1-onto→({∅} × V)
2 f1of1 5431 . . . . . . . . 9 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
31, 2ax-mp 5 . . . . . . . 8 inl:V–1-1→({∅} × V)
4 ssv 3164 . . . . . . . 8 𝐴 ⊆ V
5 f1ores 5447 . . . . . . . 8 ((inl:V–1-1→({∅} × V) ∧ 𝐴 ⊆ V) → (inl ↾ 𝐴):𝐴1-1-onto→(inl “ 𝐴))
63, 4, 5mp2an 423 . . . . . . 7 (inl ↾ 𝐴):𝐴1-1-onto→(inl “ 𝐴)
7 f1oeng 6723 . . . . . . 7 ((𝐴𝑉 ∧ (inl ↾ 𝐴):𝐴1-1-onto→(inl “ 𝐴)) → 𝐴 ≈ (inl “ 𝐴))
86, 7mpan2 422 . . . . . 6 (𝐴𝑉𝐴 ≈ (inl “ 𝐴))
98ensymd 6749 . . . . 5 (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
10 djurf1o 7024 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
11 f1of1 5431 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1210, 11ax-mp 5 . . . . . . 7 inr:V–1-1→({1o} × V)
13 f1ores 5447 . . . . . . 7 ((inr:V–1-1→({1o} × V) ∧ 𝐴 ⊆ V) → (inr ↾ 𝐴):𝐴1-1-onto→(inr “ 𝐴))
1412, 4, 13mp2an 423 . . . . . 6 (inr ↾ 𝐴):𝐴1-1-onto→(inr “ 𝐴)
15 f1oeng 6723 . . . . . 6 ((𝐴𝑉 ∧ (inr ↾ 𝐴):𝐴1-1-onto→(inr “ 𝐴)) → 𝐴 ≈ (inr “ 𝐴))
1614, 15mpan2 422 . . . . 5 (𝐴𝑉𝐴 ≈ (inr “ 𝐴))
17 entr 6750 . . . . 5 (((inl “ 𝐴) ≈ 𝐴𝐴 ≈ (inr “ 𝐴)) → (inl “ 𝐴) ≈ (inr “ 𝐴))
189, 16, 17syl2anc 409 . . . 4 (𝐴𝑉 → (inl “ 𝐴) ≈ (inr “ 𝐴))
1918adantr 274 . . 3 ((𝐴𝑉𝐵𝑊) → (inl “ 𝐴) ≈ (inr “ 𝐴))
20 ssv 3164 . . . . . . . 8 𝐵 ⊆ V
21 f1ores 5447 . . . . . . . 8 ((inr:V–1-1→({1o} × V) ∧ 𝐵 ⊆ V) → (inr ↾ 𝐵):𝐵1-1-onto→(inr “ 𝐵))
2212, 20, 21mp2an 423 . . . . . . 7 (inr ↾ 𝐵):𝐵1-1-onto→(inr “ 𝐵)
23 f1oeng 6723 . . . . . . 7 ((𝐵𝑊 ∧ (inr ↾ 𝐵):𝐵1-1-onto→(inr “ 𝐵)) → 𝐵 ≈ (inr “ 𝐵))
2422, 23mpan2 422 . . . . . 6 (𝐵𝑊𝐵 ≈ (inr “ 𝐵))
2524adantl 275 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵 ≈ (inr “ 𝐵))
2625ensymd 6749 . . . 4 ((𝐴𝑉𝐵𝑊) → (inr “ 𝐵) ≈ 𝐵)
27 f1ores 5447 . . . . . . 7 ((inl:V–1-1→({∅} × V) ∧ 𝐵 ⊆ V) → (inl ↾ 𝐵):𝐵1-1-onto→(inl “ 𝐵))
283, 20, 27mp2an 423 . . . . . 6 (inl ↾ 𝐵):𝐵1-1-onto→(inl “ 𝐵)
29 f1oeng 6723 . . . . . 6 ((𝐵𝑊 ∧ (inl ↾ 𝐵):𝐵1-1-onto→(inl “ 𝐵)) → 𝐵 ≈ (inl “ 𝐵))
3028, 29mpan2 422 . . . . 5 (𝐵𝑊𝐵 ≈ (inl “ 𝐵))
3130adantl 275 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐵 ≈ (inl “ 𝐵))
32 entr 6750 . . . 4 (((inr “ 𝐵) ≈ 𝐵𝐵 ≈ (inl “ 𝐵)) → (inr “ 𝐵) ≈ (inl “ 𝐵))
3326, 31, 32syl2anc 409 . . 3 ((𝐴𝑉𝐵𝑊) → (inr “ 𝐵) ≈ (inl “ 𝐵))
34 djuin 7029 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
3534a1i 9 . . 3 ((𝐴𝑉𝐵𝑊) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅)
36 incom 3314 . . . . 5 ((inl “ 𝐵) ∩ (inr “ 𝐴)) = ((inr “ 𝐴) ∩ (inl “ 𝐵))
37 djuin 7029 . . . . 5 ((inl “ 𝐵) ∩ (inr “ 𝐴)) = ∅
3836, 37eqtr3i 2188 . . . 4 ((inr “ 𝐴) ∩ (inl “ 𝐵)) = ∅
3938a1i 9 . . 3 ((𝐴𝑉𝐵𝑊) → ((inr “ 𝐴) ∩ (inl “ 𝐵)) = ∅)
40 unen 6782 . . 3 ((((inl “ 𝐴) ≈ (inr “ 𝐴) ∧ (inr “ 𝐵) ≈ (inl “ 𝐵)) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ ((inr “ 𝐴) ∩ (inl “ 𝐵)) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ ((inr “ 𝐴) ∪ (inl “ 𝐵)))
4119, 33, 35, 39, 40syl22anc 1229 . 2 ((𝐴𝑉𝐵𝑊) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ ((inr “ 𝐴) ∪ (inl “ 𝐵)))
42 djuun 7032 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
43 uncom 3266 . . 3 ((inr “ 𝐴) ∪ (inl “ 𝐵)) = ((inl “ 𝐵) ∪ (inr “ 𝐴))
44 djuun 7032 . . 3 ((inl “ 𝐵) ∪ (inr “ 𝐴)) = (𝐵𝐴)
4543, 44eqtri 2186 . 2 ((inr “ 𝐴) ∪ (inl “ 𝐵)) = (𝐵𝐴)
4641, 42, 453brtr3g 4015 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cun 3114  cin 3115  wss 3116  c0 3409  {csn 3576   class class class wbr 3982   × cxp 4602  cres 4606  cima 4607  1-1wf1 5185  1-1-ontowf1o 5187  1oc1o 6377  cen 6704  cdju 7002  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-er 6501  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  sbthom  13905
  Copyright terms: Public domain W3C validator