ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endjusym GIF version

Theorem endjusym 7073
Description: Reversing right and left operands of a disjoint union produces an equinumerous result. (Contributed by Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
endjusym ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))

Proof of Theorem endjusym
StepHypRef Expression
1 djulf1o 7035 . . . . . . . . 9 inl:V–1-1-onto→({∅} × V)
2 f1of1 5441 . . . . . . . . 9 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
31, 2ax-mp 5 . . . . . . . 8 inl:V–1-1→({∅} × V)
4 ssv 3169 . . . . . . . 8 𝐴 ⊆ V
5 f1ores 5457 . . . . . . . 8 ((inl:V–1-1→({∅} × V) ∧ 𝐴 ⊆ V) → (inl ↾ 𝐴):𝐴1-1-onto→(inl “ 𝐴))
63, 4, 5mp2an 424 . . . . . . 7 (inl ↾ 𝐴):𝐴1-1-onto→(inl “ 𝐴)
7 f1oeng 6735 . . . . . . 7 ((𝐴𝑉 ∧ (inl ↾ 𝐴):𝐴1-1-onto→(inl “ 𝐴)) → 𝐴 ≈ (inl “ 𝐴))
86, 7mpan2 423 . . . . . 6 (𝐴𝑉𝐴 ≈ (inl “ 𝐴))
98ensymd 6761 . . . . 5 (𝐴𝑉 → (inl “ 𝐴) ≈ 𝐴)
10 djurf1o 7036 . . . . . . . 8 inr:V–1-1-onto→({1o} × V)
11 f1of1 5441 . . . . . . . 8 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1210, 11ax-mp 5 . . . . . . 7 inr:V–1-1→({1o} × V)
13 f1ores 5457 . . . . . . 7 ((inr:V–1-1→({1o} × V) ∧ 𝐴 ⊆ V) → (inr ↾ 𝐴):𝐴1-1-onto→(inr “ 𝐴))
1412, 4, 13mp2an 424 . . . . . 6 (inr ↾ 𝐴):𝐴1-1-onto→(inr “ 𝐴)
15 f1oeng 6735 . . . . . 6 ((𝐴𝑉 ∧ (inr ↾ 𝐴):𝐴1-1-onto→(inr “ 𝐴)) → 𝐴 ≈ (inr “ 𝐴))
1614, 15mpan2 423 . . . . 5 (𝐴𝑉𝐴 ≈ (inr “ 𝐴))
17 entr 6762 . . . . 5 (((inl “ 𝐴) ≈ 𝐴𝐴 ≈ (inr “ 𝐴)) → (inl “ 𝐴) ≈ (inr “ 𝐴))
189, 16, 17syl2anc 409 . . . 4 (𝐴𝑉 → (inl “ 𝐴) ≈ (inr “ 𝐴))
1918adantr 274 . . 3 ((𝐴𝑉𝐵𝑊) → (inl “ 𝐴) ≈ (inr “ 𝐴))
20 ssv 3169 . . . . . . . 8 𝐵 ⊆ V
21 f1ores 5457 . . . . . . . 8 ((inr:V–1-1→({1o} × V) ∧ 𝐵 ⊆ V) → (inr ↾ 𝐵):𝐵1-1-onto→(inr “ 𝐵))
2212, 20, 21mp2an 424 . . . . . . 7 (inr ↾ 𝐵):𝐵1-1-onto→(inr “ 𝐵)
23 f1oeng 6735 . . . . . . 7 ((𝐵𝑊 ∧ (inr ↾ 𝐵):𝐵1-1-onto→(inr “ 𝐵)) → 𝐵 ≈ (inr “ 𝐵))
2422, 23mpan2 423 . . . . . 6 (𝐵𝑊𝐵 ≈ (inr “ 𝐵))
2524adantl 275 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵 ≈ (inr “ 𝐵))
2625ensymd 6761 . . . 4 ((𝐴𝑉𝐵𝑊) → (inr “ 𝐵) ≈ 𝐵)
27 f1ores 5457 . . . . . . 7 ((inl:V–1-1→({∅} × V) ∧ 𝐵 ⊆ V) → (inl ↾ 𝐵):𝐵1-1-onto→(inl “ 𝐵))
283, 20, 27mp2an 424 . . . . . 6 (inl ↾ 𝐵):𝐵1-1-onto→(inl “ 𝐵)
29 f1oeng 6735 . . . . . 6 ((𝐵𝑊 ∧ (inl ↾ 𝐵):𝐵1-1-onto→(inl “ 𝐵)) → 𝐵 ≈ (inl “ 𝐵))
3028, 29mpan2 423 . . . . 5 (𝐵𝑊𝐵 ≈ (inl “ 𝐵))
3130adantl 275 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐵 ≈ (inl “ 𝐵))
32 entr 6762 . . . 4 (((inr “ 𝐵) ≈ 𝐵𝐵 ≈ (inl “ 𝐵)) → (inr “ 𝐵) ≈ (inl “ 𝐵))
3326, 31, 32syl2anc 409 . . 3 ((𝐴𝑉𝐵𝑊) → (inr “ 𝐵) ≈ (inl “ 𝐵))
34 djuin 7041 . . . 4 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
3534a1i 9 . . 3 ((𝐴𝑉𝐵𝑊) → ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅)
36 incom 3319 . . . . 5 ((inl “ 𝐵) ∩ (inr “ 𝐴)) = ((inr “ 𝐴) ∩ (inl “ 𝐵))
37 djuin 7041 . . . . 5 ((inl “ 𝐵) ∩ (inr “ 𝐴)) = ∅
3836, 37eqtr3i 2193 . . . 4 ((inr “ 𝐴) ∩ (inl “ 𝐵)) = ∅
3938a1i 9 . . 3 ((𝐴𝑉𝐵𝑊) → ((inr “ 𝐴) ∩ (inl “ 𝐵)) = ∅)
40 unen 6794 . . 3 ((((inl “ 𝐴) ≈ (inr “ 𝐴) ∧ (inr “ 𝐵) ≈ (inl “ 𝐵)) ∧ (((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅ ∧ ((inr “ 𝐴) ∩ (inl “ 𝐵)) = ∅)) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ ((inr “ 𝐴) ∪ (inl “ 𝐵)))
4119, 33, 35, 39, 40syl22anc 1234 . 2 ((𝐴𝑉𝐵𝑊) → ((inl “ 𝐴) ∪ (inr “ 𝐵)) ≈ ((inr “ 𝐴) ∪ (inl “ 𝐵)))
42 djuun 7044 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
43 uncom 3271 . . 3 ((inr “ 𝐴) ∪ (inl “ 𝐵)) = ((inl “ 𝐵) ∪ (inr “ 𝐴))
44 djuun 7044 . . 3 ((inl “ 𝐵) ∪ (inr “ 𝐴)) = (𝐵𝐴)
4543, 44eqtri 2191 . 2 ((inr “ 𝐴) ∪ (inl “ 𝐵)) = (𝐵𝐴)
4641, 42, 453brtr3g 4022 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≈ (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583   class class class wbr 3989   × cxp 4609  cres 4613  cima 4614  1-1wf1 5195  1-1-ontowf1o 5197  1oc1o 6388  cen 6716  cdju 7014  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-er 6513  df-en 6719  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  sbthom  14058
  Copyright terms: Public domain W3C validator