| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrdi | GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| breqtrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| breqtrdi.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| breqtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | eqid 2207 | . 2 ⊢ 𝐴 = 𝐴 | |
| 3 | breqtrdi.2 | . 2 ⊢ 𝐵 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr3g 4092 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 class class class wbr 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: breqtrrdi 4101 en2eleq 7334 en2other2 7335 dju0en 7357 ltm1sr 7925 maxle2 11638 xrmax2sup 11680 mertenslem2 11962 ege2le3 12097 cos01gt0 12189 sin02gt0 12190 cos12dec 12194 bitsfzolem 12380 bitsmod 12382 unennn 12883 dvef 15314 sin0pilem2 15369 cosq23lt0 15420 cosq34lt1 15437 cos02pilt1 15438 logbgcd1irraplemexp 15555 lgslem3 15594 lgsquadlem1 15669 lgsquadlem3 15671 trilpolemeq1 16181 |
| Copyright terms: Public domain | W3C validator |