ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrdi GIF version

Theorem breqtrdi 4074
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
breqtrdi.1 (𝜑𝐴𝑅𝐵)
breqtrdi.2 𝐵 = 𝐶
Assertion
Ref Expression
breqtrdi (𝜑𝐴𝑅𝐶)

Proof of Theorem breqtrdi
StepHypRef Expression
1 breqtrdi.1 . 2 (𝜑𝐴𝑅𝐵)
2 eqid 2196 . 2 𝐴 = 𝐴
3 breqtrdi.2 . 2 𝐵 = 𝐶
41, 2, 33brtr3g 4066 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  breqtrrdi  4075  en2eleq  7260  en2other2  7261  dju0en  7279  ltm1sr  7842  maxle2  11362  xrmax2sup  11403  mertenslem2  11685  ege2le3  11820  cos01gt0  11912  sin02gt0  11913  cos12dec  11917  unennn  12590  dvef  14939  sin0pilem2  14991  cosq23lt0  15042  cosq34lt1  15059  cos02pilt1  15060  logbgcd1irraplemexp  15176  lgslem3  15210  lgsquadlem1  15285  lgsquadlem3  15287  trilpolemeq1  15651
  Copyright terms: Public domain W3C validator