![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrdi | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
breqtrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
breqtrdi.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | eqid 2196 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | breqtrdi.2 | . 2 ⊢ 𝐵 = 𝐶 | |
4 | 1, 2, 3 | 3brtr3g 4066 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 class class class wbr 4033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 |
This theorem is referenced by: breqtrrdi 4075 en2eleq 7260 en2other2 7261 dju0en 7279 ltm1sr 7842 maxle2 11362 xrmax2sup 11403 mertenslem2 11685 ege2le3 11820 cos01gt0 11912 sin02gt0 11913 cos12dec 11917 unennn 12590 dvef 14939 sin0pilem2 14991 cosq23lt0 15042 cosq34lt1 15059 cos02pilt1 15060 logbgcd1irraplemexp 15176 lgslem3 15210 lgsquadlem1 15285 lgsquadlem3 15287 trilpolemeq1 15651 |
Copyright terms: Public domain | W3C validator |