| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrdi | GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| breqtrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| breqtrdi.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| breqtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | eqid 2196 | . 2 ⊢ 𝐴 = 𝐴 | |
| 3 | breqtrdi.2 | . 2 ⊢ 𝐵 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr3g 4067 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: breqtrrdi 4076 en2eleq 7264 en2other2 7265 dju0en 7283 ltm1sr 7846 maxle2 11379 xrmax2sup 11421 mertenslem2 11703 ege2le3 11838 cos01gt0 11930 sin02gt0 11931 cos12dec 11935 bitsfzolem 12121 bitsmod 12123 unennn 12624 dvef 14973 sin0pilem2 15028 cosq23lt0 15079 cosq34lt1 15096 cos02pilt1 15097 logbgcd1irraplemexp 15214 lgslem3 15253 lgsquadlem1 15328 lgsquadlem3 15330 trilpolemeq1 15694 |
| Copyright terms: Public domain | W3C validator |