Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqtrdi | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
breqtrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
breqtrdi.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | eqid 2165 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | breqtrdi.2 | . 2 ⊢ 𝐵 = 𝐶 | |
4 | 1, 2, 3 | 3brtr3g 4015 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: breqtrrdi 4024 en2eleq 7151 en2other2 7152 dju0en 7170 ltm1sr 7718 maxle2 11154 xrmax2sup 11195 mertenslem2 11477 ege2le3 11612 cos01gt0 11703 sin02gt0 11704 cos12dec 11708 unennn 12330 dvef 13328 sin0pilem2 13343 cosq23lt0 13394 cosq34lt1 13411 cos02pilt1 13412 logbgcd1irraplemexp 13526 lgslem3 13543 trilpolemeq1 13919 |
Copyright terms: Public domain | W3C validator |