Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqtrdi | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
breqtrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
breqtrdi.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | eqid 2157 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | breqtrdi.2 | . 2 ⊢ 𝐵 = 𝐶 | |
4 | 1, 2, 3 | 3brtr3g 3997 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 class class class wbr 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 |
This theorem is referenced by: breqtrrdi 4006 en2eleq 7124 en2other2 7125 dju0en 7143 ltm1sr 7691 maxle2 11105 xrmax2sup 11144 mertenslem2 11426 ege2le3 11561 cos01gt0 11652 sin02gt0 11653 cos12dec 11657 unennn 12109 dvef 13059 sin0pilem2 13074 cosq23lt0 13125 cosq34lt1 13142 cos02pilt1 13143 logbgcd1irraplemexp 13256 trilpolemeq1 13582 |
Copyright terms: Public domain | W3C validator |