ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrdi GIF version

Theorem breqtrdi 4085
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
breqtrdi.1 (𝜑𝐴𝑅𝐵)
breqtrdi.2 𝐵 = 𝐶
Assertion
Ref Expression
breqtrdi (𝜑𝐴𝑅𝐶)

Proof of Theorem breqtrdi
StepHypRef Expression
1 breqtrdi.1 . 2 (𝜑𝐴𝑅𝐵)
2 eqid 2205 . 2 𝐴 = 𝐴
3 breqtrdi.2 . 2 𝐵 = 𝐶
41, 2, 33brtr3g 4077 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  breqtrrdi  4086  en2eleq  7303  en2other2  7304  dju0en  7326  ltm1sr  7890  maxle2  11523  xrmax2sup  11565  mertenslem2  11847  ege2le3  11982  cos01gt0  12074  sin02gt0  12075  cos12dec  12079  bitsfzolem  12265  bitsmod  12267  unennn  12768  dvef  15199  sin0pilem2  15254  cosq23lt0  15305  cosq34lt1  15322  cos02pilt1  15323  logbgcd1irraplemexp  15440  lgslem3  15479  lgsquadlem1  15554  lgsquadlem3  15556  trilpolemeq1  15983
  Copyright terms: Public domain W3C validator