| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrdi | GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| breqtrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| breqtrdi.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| breqtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | eqid 2205 | . 2 ⊢ 𝐴 = 𝐴 | |
| 3 | breqtrdi.2 | . 2 ⊢ 𝐵 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr3g 4077 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 class class class wbr 4044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: breqtrrdi 4086 en2eleq 7303 en2other2 7304 dju0en 7326 ltm1sr 7890 maxle2 11523 xrmax2sup 11565 mertenslem2 11847 ege2le3 11982 cos01gt0 12074 sin02gt0 12075 cos12dec 12079 bitsfzolem 12265 bitsmod 12267 unennn 12768 dvef 15199 sin0pilem2 15254 cosq23lt0 15305 cosq34lt1 15322 cos02pilt1 15323 logbgcd1irraplemexp 15440 lgslem3 15479 lgsquadlem1 15554 lgsquadlem3 15556 trilpolemeq1 15983 |
| Copyright terms: Public domain | W3C validator |