![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrdi | GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
breqtrdi.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
breqtrdi.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrdi.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | eqid 2177 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | breqtrdi.2 | . 2 ⊢ 𝐵 = 𝐶 | |
4 | 1, 2, 3 | 3brtr3g 4038 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 class class class wbr 4005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 |
This theorem is referenced by: breqtrrdi 4047 en2eleq 7197 en2other2 7198 dju0en 7216 ltm1sr 7779 maxle2 11224 xrmax2sup 11265 mertenslem2 11547 ege2le3 11682 cos01gt0 11773 sin02gt0 11774 cos12dec 11778 unennn 12401 dvef 14349 sin0pilem2 14364 cosq23lt0 14415 cosq34lt1 14432 cos02pilt1 14433 logbgcd1irraplemexp 14547 lgslem3 14564 trilpolemeq1 14950 |
Copyright terms: Public domain | W3C validator |