ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemi1 GIF version

Theorem mertenslemi1 11719
Description: Lemma for mertensabs 11721. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
mertens.p (𝜑𝑃 ∈ ℝ)
mertens.i12 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))))
mertens.pge0 (𝜑 → 0 ≤ 𝑃)
mertens.pub (𝜑 → ∀𝑤𝑇 𝑤𝑃)
Assertion
Ref Expression
mertenslemi1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝑡,𝑘,𝐴,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑤,𝑗,𝑇,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦   𝑤,𝐵   𝑃,𝑗,𝑚,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑡,𝑛,𝑠)   𝜓(𝑤,𝑠)   𝐴(𝑧,𝑤,𝑗)   𝐵(𝑘)   𝑃(𝑦,𝑧,𝑡,𝑘,𝑛,𝑠)   𝑇(𝑠)   𝐸(𝑤)   𝐹(𝑧,𝑤,𝑡,𝑘,𝑠)   𝐺(𝑤,𝑡)   𝐻(𝑧,𝑤,𝑡,𝑗,𝑛,𝑠)   𝐾(𝑤)

Proof of Theorem mertenslemi1
StepHypRef Expression
1 mertens.i12 . . . . . . 7 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))))
21simpld 112 . . . . . 6 (𝜑𝜓)
3 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
42, 3sylib 122 . . . . 5 (𝜑 → (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
54simpld 112 . . . 4 (𝜑𝑠 ∈ ℕ)
65nnnn0d 9321 . . 3 (𝜑𝑠 ∈ ℕ0)
71simprd 114 . . . 4 (𝜑 → (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))
87simpld 112 . . 3 (𝜑𝑡 ∈ ℕ0)
96, 8nn0addcld 9325 . 2 (𝜑 → (𝑠 + 𝑡) ∈ ℕ0)
10 0zd 9357 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ∈ ℤ)
11 eluzelz 9629 . . . . . . . 8 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → 𝑚 ∈ ℤ)
1211adantl 277 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℤ)
1310, 12fzfigd 10542 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) ∈ Fin)
14 simpl 109 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝜑)
15 elfznn0 10208 . . . . . . . 8 (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0)
16 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
1714, 15, 16syl2an 289 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ)
18 eqid 2196 . . . . . . . 8 (ℤ‘((𝑚𝑗) + 1)) = (ℤ‘((𝑚𝑗) + 1))
19 fznn0sub 10151 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑚) → (𝑚𝑗) ∈ ℕ0)
2019adantl 277 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℕ0)
21 peano2nn0 9308 . . . . . . . . . 10 ((𝑚𝑗) ∈ ℕ0 → ((𝑚𝑗) + 1) ∈ ℕ0)
2220, 21syl 14 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
2322nn0zd 9465 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℤ)
24 simplll 533 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
25 eluznn0 9692 . . . . . . . . . 10 ((((𝑚𝑗) + 1) ∈ ℕ0𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
2622, 25sylan 283 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
27 mertens.4 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
2824, 26, 27syl2anc 411 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
29 mertens.5 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
3024, 26, 29syl2anc 411 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
31 mertens.8 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
3231ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ )
33 nn0uz 9655 . . . . . . . . . 10 0 = (ℤ‘0)
34 simpll 527 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑)
3527, 29eqeltrd 2273 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3634, 35sylan 283 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3733, 22, 36iserex 11523 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ))
3832, 37mpbid 147 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
3918, 23, 28, 30, 38isumcl 11609 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
4017, 39mulcld 8066 . . . . . 6 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
4113, 40fsumcl 11584 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
4241abscld 11365 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4340abscld 11365 . . . . 5 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4413, 43fsumrecl 11585 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
45 mertens.9 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
4645rpred 9790 . . . . 5 (𝜑𝐸 ∈ ℝ)
4746adantr 276 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℝ)
4813, 40fsumabs 11649 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
495nnzd 9466 . . . . . . . . . 10 (𝜑𝑠 ∈ ℤ)
5049adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℤ)
5112, 50zsubcld 9472 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℤ)
5210, 51fzfigd 10542 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ∈ Fin)
536adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℕ0)
5453nn0ge0d 9324 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ≤ 𝑠)
5512zred 9467 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℝ)
5653nn0red 9322 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℝ)
5755, 56subge02d 8583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0 ≤ 𝑠 ↔ (𝑚𝑠) ≤ 𝑚))
5854, 57mpbid 147 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ≤ 𝑚)
5953, 33eleqtrdi 2289 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (ℤ‘0))
60 uzid 9634 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → 𝑠 ∈ (ℤ𝑠))
6149, 60syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝑠 ∈ (ℤ𝑠))
62 uzaddcl 9679 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℤ𝑠) ∧ 𝑡 ∈ ℕ0) → (𝑠 + 𝑡) ∈ (ℤ𝑠))
6361, 8, 62syl2anc 411 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 + 𝑡) ∈ (ℤ𝑠))
64 eqid 2196 . . . . . . . . . . . . . . . . 17 (ℤ𝑠) = (ℤ𝑠)
6564uztrn2 9638 . . . . . . . . . . . . . . . 16 (((𝑠 + 𝑡) ∈ (ℤ𝑠) ∧ 𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
6663, 65sylan 283 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
67 elfzuzb 10113 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0...𝑚) ↔ (𝑠 ∈ (ℤ‘0) ∧ 𝑚 ∈ (ℤ𝑠)))
6859, 66, 67sylanbrc 417 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (0...𝑚))
69 fznn0sub2 10222 . . . . . . . . . . . . . 14 (𝑠 ∈ (0...𝑚) → (𝑚𝑠) ∈ (0...𝑚))
7068, 69syl 14 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (0...𝑚))
71 elfzelz 10119 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℤ)
7270, 71syl 14 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℤ)
73 eluz 9633 . . . . . . . . . . . 12 (((𝑚𝑠) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7472, 12, 73syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7558, 74mpbird 167 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ‘(𝑚𝑠)))
76 fzss2 10158 . . . . . . . . . 10 (𝑚 ∈ (ℤ‘(𝑚𝑠)) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7775, 76syl 14 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7877sselda 3184 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ (0...𝑚))
7916abscld 11365 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
8014, 15, 79syl2an 289 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘𝐴) ∈ ℝ)
8139abscld 11365 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
8280, 81remulcld 8076 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8378, 82syldan 282 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8452, 83fsumrecl 11585 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8551peano2zd 9470 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ ℤ)
8685, 12fzfigd 10542 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ∈ Fin)
87 elfznn0 10208 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℕ0)
8870, 87syl 14 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℕ0)
89 peano2nn0 9308 . . . . . . . . . . . 12 ((𝑚𝑠) ∈ ℕ0 → ((𝑚𝑠) + 1) ∈ ℕ0)
9088, 89syl 14 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ ℕ0)
9190, 33eleqtrdi 2289 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ‘0))
92 fzss1 10157 . . . . . . . . . 10 (((𝑚𝑠) + 1) ∈ (ℤ‘0) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
9391, 92syl 14 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
9493sselda 3184 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (0...𝑚))
9594, 82syldan 282 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9686, 95fsumrecl 11585 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9745rphalfcld 9803 . . . . . . . 8 (𝜑 → (𝐸 / 2) ∈ ℝ+)
9897rpred 9790 . . . . . . 7 (𝜑 → (𝐸 / 2) ∈ ℝ)
9998adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℝ)
100 elfznn0 10208 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℕ0)
10114, 100, 79syl2an 289 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℝ)
10252, 101fsumrecl 11585 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ)
103102, 99remulcld 8076 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ)
104 0zd 9357 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
105 eqidd 2197 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
106 mertens.2 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
107106, 79eqeltrd 2273 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
108 mertens.7 . . . . . . . . . . 11 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
10933, 104, 105, 107, 108isumrecl 11613 . . . . . . . . . 10 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
11016absge0d 11368 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
111110, 106breqtrrd 4062 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
11233, 104, 105, 107, 108, 111isumge0 11614 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
113109, 112ge0p1rpd 9821 . . . . . . . . 9 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
114113adantr 276 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
115103, 114rerpdivcld 9822 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
11697, 113rpdivcld 9808 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
117116rpred 9790 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
118117ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
119101, 118remulcld 8076 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) ∈ ℝ)
12078, 23syldan 282 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℤ)
121 simplll 533 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
12278, 22syldan 282 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℕ0)
123122, 25sylan 283 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
124121, 123, 27syl2anc 411 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
125121, 123, 29syl2anc 411 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
12678, 38syldan 282 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
12718, 120, 124, 125, 126isumcl 11609 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
128127abscld 11365 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
12979, 110jca 306 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
13014, 100, 129syl2an 289 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
131124sumeq2dv 11552 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
132131fveq2d 5565 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
133 fvoveq1 5948 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚𝑗) → (ℤ‘(𝑛 + 1)) = (ℤ‘((𝑚𝑗) + 1)))
134133sumeq1d 11550 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚𝑗) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
135134fveq2d 5565 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝑗) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
136135breq1d 4044 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝑗) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
1374simprd 114 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
138137ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
139 elfzelz 10119 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℤ)
140139adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℤ)
141140zred 9467 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℝ)
14211ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℤ)
143142zred 9467 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℝ)
14449ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℤ)
145144zred 9467 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℝ)
146 elfzle2 10122 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ≤ (𝑚𝑠))
147146adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ≤ (𝑚𝑠))
148141, 143, 145, 147lesubd 8595 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ≤ (𝑚𝑗))
149142, 140zsubcld 9472 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ ℤ)
150 eluz 9633 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℤ ∧ (𝑚𝑗) ∈ ℤ) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
151144, 149, 150syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
152148, 151mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ (ℤ𝑠))
153136, 138, 152rspcdva 2873 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
154132, 153eqbrtrrd 4058 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
155128, 118, 154ltled 8164 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
156 lemul2a 8905 . . . . . . . . . 10 ((((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
157128, 118, 130, 155, 156syl31anc 1252 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
15852, 83, 119, 157fsumle 11647 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
159102recnd 8074 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℂ)
16097rpcnd 9792 . . . . . . . . . . 11 (𝜑 → (𝐸 / 2) ∈ ℂ)
161160adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℂ)
162 peano2re 8181 . . . . . . . . . . . . 13 𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
163109, 162syl 14 . . . . . . . . . . . 12 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
164163recnd 8074 . . . . . . . . . . 11 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
165164adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
166114rpap0d 9796 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) # 0)
167159, 161, 165, 166divassapd 8872 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
168 fveq2 5561 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
169168cbvsumv 11545 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 (𝐾𝑛) = Σ𝑗 ∈ ℕ0 (𝐾𝑗)
170169oveq1i 5935 . . . . . . . . . . . . . . 15 𝑛 ∈ ℕ0 (𝐾𝑛) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)
171170oveq2i 5936 . . . . . . . . . . . . . 14 ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) = ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
172171, 116eqeltrid 2283 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℝ+)
173172rpcnd 9792 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
174173adantr 276 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
17579recnd 8074 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
17614, 100, 175syl2an 289 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℂ)
17752, 174, 176fsummulc1 11633 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))))
178171oveq2i 5936 . . . . . . . . . 10 𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
179171oveq2i 5936 . . . . . . . . . . . 12 ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
180179a1i 9 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
181180sumeq2i 11548 . . . . . . . . . 10 Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
182177, 178, 1813eqtr3g 2252 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
183167, 182eqtrd 2229 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
184158, 183breqtrrd 4062 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
185109adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
186163adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
187 fz0ssnn0 10210 . . . . . . . . . . . . 13 (0...(𝑚𝑠)) ⊆ ℕ0
188187a1i 9 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ ℕ0)
189106adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
190 nn0z 9365 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
191190adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
192 0zd 9357 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ∈ ℤ)
19351adantr 276 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝑚𝑠) ∈ ℤ)
194 fzdcel 10134 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → DECID 𝑗 ∈ (0...(𝑚𝑠)))
195191, 192, 193, 194syl3anc 1249 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → DECID 𝑗 ∈ (0...(𝑚𝑠)))
196195ralrimiva 2570 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ∀𝑗 ∈ ℕ0 DECID 𝑗 ∈ (0...(𝑚𝑠)))
19779adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
198110adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
199108adantr 276 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → seq0( + , 𝐾) ∈ dom ⇝ )
20033, 10, 52, 188, 189, 196, 197, 198, 199isumlessdc 11680 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (abs‘𝐴))
201106sumeq2dv 11552 . . . . . . . . . . . 12 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
202201adantr 276 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
203200, 202breqtrrd 4062 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
204109ltp1d 8976 . . . . . . . . . . 11 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
205204adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
206102, 185, 186, 203, 205lelttrd 8170 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
20797rpregt0d 9797 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
208207adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
209 ltmul1 8638 . . . . . . . . . 10 ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ ∧ (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
210102, 186, 208, 209syl3anc 1249 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
211206, 210mpbid 147 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2)))
212113rpregt0d 9797 . . . . . . . . . 10 (𝜑 → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
213212adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
214 ltdivmul 8922 . . . . . . . . 9 (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ ∧ (𝐸 / 2) ∈ ℝ ∧ ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
215103, 99, 213, 214syl3anc 1249 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
216211, 215mpbird 167 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2))
21784, 115, 99, 184, 216lelttrd 8170 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
218 mertens.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℝ)
21998, 218remulcld 8076 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · 𝑃) ∈ ℝ)
220 mertens.pge0 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑃)
221218, 220ge0p1rpd 9821 . . . . . . . . 9 (𝜑 → (𝑃 + 1) ∈ ℝ+)
222219, 221rerpdivcld 9822 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) ∈ ℝ)
223222adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) ∈ ℝ)
2245nnrpd 9788 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℝ+)
22597, 224rpdivcld 9808 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
226225, 221rpdivcld 9808 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ+)
227226rpred 9790 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ)
228227, 218remulcld 8076 . . . . . . . . . 10 (𝜑 → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℝ)
229228ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℝ)
230 simpll 527 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝜑)
23194, 15syl 14 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℕ0)
232230, 231, 79syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ∈ ℝ)
233227ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ)
234230, 231, 106syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) = (abs‘𝐴))
235 fveq2 5561 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐾𝑚) = (𝐾𝑗))
236235breq1d 4044 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ↔ (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))
2377simprd 114 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
238237ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
239 elfzuz 10115 . . . . . . . . . . . . . 14 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → 𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)))
240 eluzle 9632 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → (𝑠 + 𝑡) ≤ 𝑚)
241240adantl 277 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + 𝑡) ≤ 𝑚)
2428nn0zd 9465 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑡 ∈ ℤ)
243242adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℤ)
244243zred 9467 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℝ)
24556, 244, 55leaddsub2d 8593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑠 + 𝑡) ≤ 𝑚𝑡 ≤ (𝑚𝑠)))
246241, 245mpbid 147 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ≤ (𝑚𝑠))
247 eluz 9633 . . . . . . . . . . . . . . . . 17 ((𝑡 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
248243, 72, 247syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
249246, 248mpbird 167 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (ℤ𝑡))
250 peano2uz 9676 . . . . . . . . . . . . . . 15 ((𝑚𝑠) ∈ (ℤ𝑡) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
251249, 250syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
252 uztrn 9637 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)) ∧ ((𝑚𝑠) + 1) ∈ (ℤ𝑡)) → 𝑗 ∈ (ℤ𝑡))
253239, 251, 252syl2anr 290 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (ℤ𝑡))
254236, 238, 253rspcdva 2873 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
255234, 254eqbrtrrd 4058 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
256232, 233, 255ltled 8164 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
257 breq1 4037 . . . . . . . . . . 11 (𝑤 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (𝑤𝑃 ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃))
258 mertens.pub . . . . . . . . . . . 12 (𝜑 → ∀𝑤𝑇 𝑤𝑃)
259258ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∀𝑤𝑇 𝑤𝑃)
26055adantr 276 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑚 ∈ ℝ)
261 peano2zm 9383 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → (𝑠 − 1) ∈ ℤ)
26249, 261syl 14 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑠 − 1) ∈ ℤ)
263262zred 9467 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 − 1) ∈ ℝ)
264263ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℝ)
265231nn0red 9322 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℝ)
26612zcnd 9468 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℂ)
26756recnd 8074 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℂ)
268 1cnd 8061 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℂ)
269266, 267, 268subsubd 8384 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
270269adantr 276 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
271 elfzle1 10121 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → ((𝑚𝑠) + 1) ≤ 𝑗)
272271adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑠) + 1) ≤ 𝑗)
273270, 272eqbrtrd 4056 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) ≤ 𝑗)
274260, 264, 265, 273subled 8594 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ≤ (𝑠 − 1))
27594, 19syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ ℕ0)
276275, 33eleqtrdi 2289 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (ℤ‘0))
277262ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℤ)
278 elfz5 10111 . . . . . . . . . . . . . . 15 (((𝑚𝑗) ∈ (ℤ‘0) ∧ (𝑠 − 1) ∈ ℤ) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
279276, 277, 278syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
280274, 279mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (0...(𝑠 − 1)))
281 simplll 533 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
28294, 22syldan 282 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
283282, 25sylan 283 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
284281, 283, 27syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
285284sumeq2dv 11552 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
286285eqcomd 2202 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
287286fveq2d 5565 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
288135rspceeqv 2886 . . . . . . . . . . . . 13 (((𝑚𝑗) ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
289280, 287, 288syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
29094, 39syldan 282 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
291290abscld 11365 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
292 eqeq1 2203 . . . . . . . . . . . . . . 15 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
293292rexbidv 2498 . . . . . . . . . . . . . 14 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
294 mertens.10 . . . . . . . . . . . . . 14 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
295293, 294elab2g 2911 . . . . . . . . . . . . 13 ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
296291, 295syl 14 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
297289, 296mpbird 167 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇)
298257, 259, 297rspcdva 2873 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃)
299230, 231, 129syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
30094, 81syldan 282 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
30139absge0d 11368 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
30294, 301syldan 282 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
303300, 302jca 306 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
304218ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑃 ∈ ℝ)
305 lemul12a 8908 . . . . . . . . . . 11 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ) ∧ (((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∧ 𝑃 ∈ ℝ)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
306299, 233, 303, 304, 305syl22anc 1250 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
307256, 298, 306mp2and 433 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))
30886, 95, 229, 307fsumle 11647 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))
309228recnd 8074 . . . . . . . . . . 11 (𝜑 → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ)
310309adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ)
311 fsumconst 11638 . . . . . . . . . 10 (((((𝑚𝑠) + 1)...𝑚) ∈ Fin ∧ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
31286, 310, 311syl2anc 411 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
313 1zzd 9372 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℤ)
314 fzen 10137 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
315313, 50, 72, 314syl3anc 1249 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
316 ax-1cn 7991 . . . . . . . . . . . . . . 15 1 ∈ ℂ
31772zcnd 9468 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℂ)
318 addcom 8182 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝑚𝑠) ∈ ℂ) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
319316, 317, 318sylancr 414 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
320267, 266pncan3d 8359 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + (𝑚𝑠)) = 𝑚)
321319, 320oveq12d 5943 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))) = (((𝑚𝑠) + 1)...𝑚))
322315, 321breqtrd 4060 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚))
323313, 50fzfigd 10542 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ∈ Fin)
324 hashen 10895 . . . . . . . . . . . . 13 (((1...𝑠) ∈ Fin ∧ (((𝑚𝑠) + 1)...𝑚) ∈ Fin) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
325323, 86, 324syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
326322, 325mpbird 167 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)))
327 hashfz1 10894 . . . . . . . . . . . 12 (𝑠 ∈ ℕ0 → (♯‘(1...𝑠)) = 𝑠)
32853, 327syl 14 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = 𝑠)
329326, 328eqtr3d 2231 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(((𝑚𝑠) + 1)...𝑚)) = 𝑠)
330329oveq1d 5940 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
331218recnd 8074 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
332221rpcnd 9792 . . . . . . . . . . . 12 (𝜑 → (𝑃 + 1) ∈ ℂ)
333221rpap0d 9796 . . . . . . . . . . . 12 (𝜑 → (𝑃 + 1) # 0)
334160, 331, 332, 333div23apd 8874 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) = (((𝐸 / 2) / (𝑃 + 1)) · 𝑃))
33549zcnd 9468 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℂ)
336225rpcnd 9792 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℂ)
337335, 336, 332, 333divassapd 8872 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (𝑃 + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))
3385nnap0d 9055 . . . . . . . . . . . . . . 15 (𝜑𝑠 # 0)
339160, 335, 338divcanap2d 8838 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 · ((𝐸 / 2) / 𝑠)) = (𝐸 / 2))
340339oveq1d 5940 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (𝑃 + 1)) = ((𝐸 / 2) / (𝑃 + 1)))
341337, 340eqtr3d 2231 . . . . . . . . . . . 12 (𝜑 → (𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) = ((𝐸 / 2) / (𝑃 + 1)))
342341oveq1d 5940 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) · 𝑃) = (((𝐸 / 2) / (𝑃 + 1)) · 𝑃))
343226rpcnd 9792 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℂ)
344335, 343, 331mulassd 8069 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) · 𝑃) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
345334, 342, 3443eqtr2rd 2236 . . . . . . . . . 10 (𝜑 → (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
346345adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
347312, 330, 3463eqtrd 2233 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
348308, 347breqtrd 4060 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
349 peano2re 8181 . . . . . . . . . . 11 (𝑃 ∈ ℝ → (𝑃 + 1) ∈ ℝ)
350218, 349syl 14 . . . . . . . . . 10 (𝜑 → (𝑃 + 1) ∈ ℝ)
351218ltp1d 8976 . . . . . . . . . 10 (𝜑𝑃 < (𝑃 + 1))
352218, 350, 97, 351ltmul2dd 9847 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · 𝑃) < ((𝐸 / 2) · (𝑃 + 1)))
353219, 98, 221ltdivmul2d 9843 . . . . . . . . 9 (𝜑 → ((((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2) ↔ ((𝐸 / 2) · 𝑃) < ((𝐸 / 2) · (𝑃 + 1))))
354352, 353mpbird 167 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2))
355354adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2))
35696, 223, 99, 348, 355lelttrd 8170 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
35784, 96, 99, 99, 217, 356lt2addd 8613 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) < ((𝐸 / 2) + (𝐸 / 2)))
35817, 39absmuld 11378 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
359358sumeq2dv 11552 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
36072zred 9467 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℝ)
361360ltp1d 8976 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) < ((𝑚𝑠) + 1))
362 fzdisj 10146 . . . . . . . 8 ((𝑚𝑠) < ((𝑚𝑠) + 1) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
363361, 362syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
364 fzsplit 10145 . . . . . . . 8 ((𝑚𝑠) ∈ (0...𝑚) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
36570, 364syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
36682recnd 8074 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℂ)
367363, 365, 13, 366fsumsplit 11591 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))))
368359, 367eqtr2d 2230 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) = Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
36945rpcnd 9792 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
370369adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℂ)
3713702halvesd 9256 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
372357, 368, 3713brtr3d 4065 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
37342, 44, 47, 48, 372lelttrd 8170 . . 3 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
374373ralrimiva 2570 . 2 (𝜑 → ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
375 fveq2 5561 . . . 4 (𝑦 = (𝑠 + 𝑡) → (ℤ𝑦) = (ℤ‘(𝑠 + 𝑡)))
376375raleqdv 2699 . . 3 (𝑦 = (𝑠 + 𝑡) → (∀𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸 ↔ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
377376rspcev 2868 . 2 (((𝑠 + 𝑡) ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
3789, 374, 377syl2anc 411 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  cun 3155  cin 3156  wss 3157  c0 3451   class class class wbr 4034  dom cdm 4664  cfv 5259  (class class class)co 5925  cen 6806  Fincfn 6808  cc 7896  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903   < clt 8080  cle 8081  cmin 8216   / cdiv 8718  cn 9009  2c2 9060  0cn0 9268  cz 9345  cuz 9620  +crp 9747  ...cfz 10102  seqcseq 10558  chash 10886  abscabs 11181  cli 11462  Σcsu 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-ico 9988  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by:  mertenslem2  11720
  Copyright terms: Public domain W3C validator