Proof of Theorem mertenslemi1
| Step | Hyp | Ref
| Expression |
| 1 | | mertens.i12 |
. . . . . . 7
⊢ (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))) |
| 2 | 1 | simpld 112 |
. . . . . 6
⊢ (𝜑 → 𝜓) |
| 3 | | mertens.11 |
. . . . . 6
⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 4 | 2, 3 | sylib 122 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 5 | 4 | simpld 112 |
. . . 4
⊢ (𝜑 → 𝑠 ∈ ℕ) |
| 6 | 5 | nnnn0d 9302 |
. . 3
⊢ (𝜑 → 𝑠 ∈ ℕ0) |
| 7 | 1 | simprd 114 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))) |
| 8 | 7 | simpld 112 |
. . 3
⊢ (𝜑 → 𝑡 ∈ ℕ0) |
| 9 | 6, 8 | nn0addcld 9306 |
. 2
⊢ (𝜑 → (𝑠 + 𝑡) ∈
ℕ0) |
| 10 | | 0zd 9338 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 0 ∈ ℤ) |
| 11 | | eluzelz 9610 |
. . . . . . . 8
⊢ (𝑚 ∈
(ℤ≥‘(𝑠 + 𝑡)) → 𝑚 ∈ ℤ) |
| 12 | 11 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ ℤ) |
| 13 | 10, 12 | fzfigd 10523 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...𝑚) ∈ Fin) |
| 14 | | simpl 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝜑) |
| 15 | | elfznn0 10189 |
. . . . . . . 8
⊢ (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0) |
| 16 | | mertens.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
| 17 | 14, 15, 16 | syl2an 289 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ) |
| 18 | | eqid 2196 |
. . . . . . . 8
⊢
(ℤ≥‘((𝑚 − 𝑗) + 1)) =
(ℤ≥‘((𝑚 − 𝑗) + 1)) |
| 19 | | fznn0sub 10132 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑚) → (𝑚 − 𝑗) ∈
ℕ0) |
| 20 | 19 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚 − 𝑗) ∈
ℕ0) |
| 21 | | peano2nn0 9289 |
. . . . . . . . . 10
⊢ ((𝑚 − 𝑗) ∈ ℕ0 → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
| 22 | 20, 21 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
| 23 | 22 | nn0zd 9446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈ ℤ) |
| 24 | | simplll 533 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝜑) |
| 25 | | eluznn0 9673 |
. . . . . . . . . 10
⊢ ((((𝑚 − 𝑗) + 1) ∈ ℕ0 ∧ 𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
| 26 | 22, 25 | sylan 283 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
| 27 | | mertens.4 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
| 28 | 24, 26, 27 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → (𝐺‘𝑘) = 𝐵) |
| 29 | | mertens.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
| 30 | 24, 26, 29 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝐵 ∈ ℂ) |
| 31 | | mertens.8 |
. . . . . . . . . 10
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) |
| 32 | 31 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ ) |
| 33 | | nn0uz 9636 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 34 | | simpll 527 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑) |
| 35 | 27, 29 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
| 36 | 34, 35 | sylan 283 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
| 37 | 33, 22, 36 | iserex 11504 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )) |
| 38 | 32, 37 | mpbid 147 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ) |
| 39 | 18, 23, 28, 30, 38 | isumcl 11590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 ∈ ℂ) |
| 40 | 17, 39 | mulcld 8047 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℂ) |
| 41 | 13, 40 | fsumcl 11565 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℂ) |
| 42 | 41 | abscld 11346 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
| 43 | 40 | abscld 11346 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
| 44 | 13, 43 | fsumrecl 11566 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
| 45 | | mertens.9 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 46 | 45 | rpred 9771 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 47 | 46 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝐸 ∈ ℝ) |
| 48 | 13, 40 | fsumabs 11630 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
| 49 | 5 | nnzd 9447 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑠 ∈ ℤ) |
| 50 | 49 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ ℤ) |
| 51 | 12, 50 | zsubcld 9453 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ ℤ) |
| 52 | 10, 51 | fzfigd 10523 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...(𝑚 − 𝑠)) ∈ Fin) |
| 53 | 6 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ ℕ0) |
| 54 | 53 | nn0ge0d 9305 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 0 ≤ 𝑠) |
| 55 | 12 | zred 9448 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ ℝ) |
| 56 | 53 | nn0red 9303 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ ℝ) |
| 57 | 55, 56 | subge02d 8564 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0 ≤ 𝑠 ↔ (𝑚 − 𝑠) ≤ 𝑚)) |
| 58 | 54, 57 | mpbid 147 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ≤ 𝑚) |
| 59 | 53, 33 | eleqtrdi 2289 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈
(ℤ≥‘0)) |
| 60 | | uzid 9615 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ ℤ → 𝑠 ∈
(ℤ≥‘𝑠)) |
| 61 | 49, 60 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑠 ∈ (ℤ≥‘𝑠)) |
| 62 | | uzaddcl 9660 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈
(ℤ≥‘𝑠) ∧ 𝑡 ∈ ℕ0) → (𝑠 + 𝑡) ∈ (ℤ≥‘𝑠)) |
| 63 | 61, 8, 62 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑠 + 𝑡) ∈ (ℤ≥‘𝑠)) |
| 64 | | eqid 2196 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑠) = (ℤ≥‘𝑠) |
| 65 | 64 | uztrn2 9619 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑠 + 𝑡) ∈ (ℤ≥‘𝑠) ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ≥‘𝑠)) |
| 66 | 63, 65 | sylan 283 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ≥‘𝑠)) |
| 67 | | elfzuzb 10094 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ (0...𝑚) ↔ (𝑠 ∈ (ℤ≥‘0)
∧ 𝑚 ∈
(ℤ≥‘𝑠))) |
| 68 | 59, 66, 67 | sylanbrc 417 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ (0...𝑚)) |
| 69 | | fznn0sub2 10203 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ (0...𝑚) → (𝑚 − 𝑠) ∈ (0...𝑚)) |
| 70 | 68, 69 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ (0...𝑚)) |
| 71 | | elfzelz 10100 |
. . . . . . . . . . . . 13
⊢ ((𝑚 − 𝑠) ∈ (0...𝑚) → (𝑚 − 𝑠) ∈ ℤ) |
| 72 | 70, 71 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ ℤ) |
| 73 | | eluz 9614 |
. . . . . . . . . . . 12
⊢ (((𝑚 − 𝑠) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ≥‘(𝑚 − 𝑠)) ↔ (𝑚 − 𝑠) ≤ 𝑚)) |
| 74 | 72, 12, 73 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 ∈ (ℤ≥‘(𝑚 − 𝑠)) ↔ (𝑚 − 𝑠) ≤ 𝑚)) |
| 75 | 58, 74 | mpbird 167 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ≥‘(𝑚 − 𝑠))) |
| 76 | | fzss2 10139 |
. . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘(𝑚 − 𝑠)) → (0...(𝑚 − 𝑠)) ⊆ (0...𝑚)) |
| 77 | 75, 76 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...(𝑚 − 𝑠)) ⊆ (0...𝑚)) |
| 78 | 77 | sselda 3183 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑗 ∈ (0...𝑚)) |
| 79 | 16 | abscld 11346 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘𝐴) ∈
ℝ) |
| 80 | 14, 15, 79 | syl2an 289 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘𝐴) ∈ ℝ) |
| 81 | 39 | abscld 11346 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ) |
| 82 | 80, 81 | remulcld 8057 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
| 83 | 78, 82 | syldan 282 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
| 84 | 52, 83 | fsumrecl 11566 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
| 85 | 51 | peano2zd 9451 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑚 − 𝑠) + 1) ∈ ℤ) |
| 86 | 85, 12 | fzfigd 10523 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((𝑚 − 𝑠) + 1)...𝑚) ∈ Fin) |
| 87 | | elfznn0 10189 |
. . . . . . . . . . . . 13
⊢ ((𝑚 − 𝑠) ∈ (0...𝑚) → (𝑚 − 𝑠) ∈
ℕ0) |
| 88 | 70, 87 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈
ℕ0) |
| 89 | | peano2nn0 9289 |
. . . . . . . . . . . 12
⊢ ((𝑚 − 𝑠) ∈ ℕ0 → ((𝑚 − 𝑠) + 1) ∈
ℕ0) |
| 90 | 88, 89 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑚 − 𝑠) + 1) ∈
ℕ0) |
| 91 | 90, 33 | eleqtrdi 2289 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘0)) |
| 92 | | fzss1 10138 |
. . . . . . . . . 10
⊢ (((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘0) → (((𝑚 − 𝑠) + 1)...𝑚) ⊆ (0...𝑚)) |
| 93 | 91, 92 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((𝑚 − 𝑠) + 1)...𝑚) ⊆ (0...𝑚)) |
| 94 | 93 | sselda 3183 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑗 ∈ (0...𝑚)) |
| 95 | 94, 82 | syldan 282 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
| 96 | 86, 95 | fsumrecl 11566 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℝ) |
| 97 | 45 | rphalfcld 9784 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 / 2) ∈
ℝ+) |
| 98 | 97 | rpred 9771 |
. . . . . . 7
⊢ (𝜑 → (𝐸 / 2) ∈ ℝ) |
| 99 | 98 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℝ) |
| 100 | | elfznn0 10189 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑚 − 𝑠)) → 𝑗 ∈ ℕ0) |
| 101 | 14, 100, 79 | syl2an 289 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘𝐴) ∈ ℝ) |
| 102 | 52, 101 | fsumrecl 11566 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) ∈ ℝ) |
| 103 | 102, 99 | remulcld 8057 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ) |
| 104 | | 0zd 9338 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℤ) |
| 105 | | eqidd 2197 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (𝐾‘𝑗)) |
| 106 | | mertens.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
| 107 | 106, 79 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) ∈ ℝ) |
| 108 | | mertens.7 |
. . . . . . . . . . 11
⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
) |
| 109 | 33, 104, 105, 107, 108 | isumrecl 11594 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) ∈ ℝ) |
| 110 | 16 | absge0d 11349 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 0 ≤
(abs‘𝐴)) |
| 111 | 110, 106 | breqtrrd 4061 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 0 ≤
(𝐾‘𝑗)) |
| 112 | 33, 104, 105, 107, 108, 111 | isumge0 11595 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0
(𝐾‘𝑗)) |
| 113 | 109, 112 | ge0p1rpd 9802 |
. . . . . . . . 9
⊢ (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈
ℝ+) |
| 114 | 113 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈
ℝ+) |
| 115 | 103, 114 | rerpdivcld 9803 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈ ℝ) |
| 116 | 97, 113 | rpdivcld 9789 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈
ℝ+) |
| 117 | 116 | rpred 9771 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈ ℝ) |
| 118 | 117 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈ ℝ) |
| 119 | 101, 118 | remulcld 8057 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) ∈ ℝ) |
| 120 | 78, 23 | syldan 282 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((𝑚 − 𝑗) + 1) ∈ ℤ) |
| 121 | | simplll 533 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝜑) |
| 122 | 78, 22 | syldan 282 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
| 123 | 122, 25 | sylan 283 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
| 124 | 121, 123,
27 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → (𝐺‘𝑘) = 𝐵) |
| 125 | 121, 123,
29 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝐵 ∈ ℂ) |
| 126 | 78, 38 | syldan 282 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ) |
| 127 | 18, 120, 124, 125, 126 | isumcl 11590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 ∈ ℂ) |
| 128 | 127 | abscld 11346 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ) |
| 129 | 79, 110 | jca 306 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((abs‘𝐴) ∈
ℝ ∧ 0 ≤ (abs‘𝐴))) |
| 130 | 14, 100, 129 | syl2an 289 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤
(abs‘𝐴))) |
| 131 | 124 | sumeq2dv 11533 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) |
| 132 | 131 | fveq2d 5562 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 133 | | fvoveq1 5945 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑚 − 𝑗) → (ℤ≥‘(𝑛 + 1)) =
(ℤ≥‘((𝑚 − 𝑗) + 1))) |
| 134 | 133 | sumeq1d 11531 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑚 − 𝑗) → Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) |
| 135 | 134 | fveq2d 5562 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 − 𝑗) → (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘))) |
| 136 | 135 | breq1d 4043 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 − 𝑗) → ((abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 137 | 4 | simprd 114 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 138 | 137 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 139 | | elfzelz 10100 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...(𝑚 − 𝑠)) → 𝑗 ∈ ℤ) |
| 140 | 139 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑗 ∈ ℤ) |
| 141 | 140 | zred 9448 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑗 ∈ ℝ) |
| 142 | 11 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑚 ∈ ℤ) |
| 143 | 142 | zred 9448 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑚 ∈ ℝ) |
| 144 | 49 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑠 ∈ ℤ) |
| 145 | 144 | zred 9448 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑠 ∈ ℝ) |
| 146 | | elfzle2 10103 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...(𝑚 − 𝑠)) → 𝑗 ≤ (𝑚 − 𝑠)) |
| 147 | 146 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑗 ≤ (𝑚 − 𝑠)) |
| 148 | 141, 143,
145, 147 | lesubd 8576 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → 𝑠 ≤ (𝑚 − 𝑗)) |
| 149 | 142, 140 | zsubcld 9453 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (𝑚 − 𝑗) ∈ ℤ) |
| 150 | | eluz 9614 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℤ ∧ (𝑚 − 𝑗) ∈ ℤ) → ((𝑚 − 𝑗) ∈ (ℤ≥‘𝑠) ↔ 𝑠 ≤ (𝑚 − 𝑗))) |
| 151 | 144, 149,
150 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((𝑚 − 𝑗) ∈ (ℤ≥‘𝑠) ↔ 𝑠 ≤ (𝑚 − 𝑗))) |
| 152 | 148, 151 | mpbird 167 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (𝑚 − 𝑗) ∈ (ℤ≥‘𝑠)) |
| 153 | 136, 138,
152 | rspcdva 2873 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 154 | 132, 153 | eqbrtrrd 4057 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 155 | 128, 118,
154 | ltled 8145 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 156 | | lemul2a 8886 |
. . . . . . . . . 10
⊢
((((abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ ∧ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈ ℝ ∧
((abs‘𝐴) ∈
ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 157 | 128, 118,
130, 155, 156 | syl31anc 1252 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 158 | 52, 83, 119, 157 | fsumle 11628 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 159 | 102 | recnd 8055 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) ∈ ℂ) |
| 160 | 97 | rpcnd 9773 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / 2) ∈ ℂ) |
| 161 | 160 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℂ) |
| 162 | | peano2re 8162 |
. . . . . . . . . . . . 13
⊢
(Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) ∈ ℝ → (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1) ∈ ℝ) |
| 163 | 109, 162 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℝ) |
| 164 | 163 | recnd 8055 |
. . . . . . . . . . 11
⊢ (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℂ) |
| 165 | 164 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℂ) |
| 166 | 114 | rpap0d 9777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) # 0) |
| 167 | 159, 161,
165, 166 | divassapd 8853 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) = (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 168 | | fveq2 5558 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝐾‘𝑛) = (𝐾‘𝑗)) |
| 169 | 168 | cbvsumv 11526 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑛 ∈
ℕ0 (𝐾‘𝑛) = Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) |
| 170 | 169 | oveq1i 5932 |
. . . . . . . . . . . . . . 15
⊢
(Σ𝑛 ∈
ℕ0 (𝐾‘𝑛) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) |
| 171 | 170 | oveq2i 5933 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0
(𝐾‘𝑛) + 1)) = ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
| 172 | 171, 116 | eqeltrid 2283 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1)) ∈
ℝ+) |
| 173 | 172 | rpcnd 9773 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1)) ∈ ℂ) |
| 174 | 173 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1)) ∈ ℂ) |
| 175 | 79 | recnd 8055 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘𝐴) ∈
ℂ) |
| 176 | 14, 100, 175 | syl2an 289 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚 − 𝑠))) → (abs‘𝐴) ∈ ℂ) |
| 177 | 52, 174, 176 | fsummulc1 11614 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1)))) |
| 178 | 171 | oveq2i 5933 |
. . . . . . . . . 10
⊢
(Σ𝑗 ∈
(0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1))) = (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 179 | 171 | oveq2i 5933 |
. . . . . . . . . . . 12
⊢
((abs‘𝐴)
· ((𝐸 / 2) /
(Σ𝑛 ∈
ℕ0 (𝐾‘𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 180 | 179 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...(𝑚 − 𝑠)) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 181 | 180 | sumeq2i 11529 |
. . . . . . . . . 10
⊢
Σ𝑗 ∈
(0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾‘𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 182 | 177, 178,
181 | 3eqtr3g 2252 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) = Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 183 | 167, 182 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) = Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 184 | 158, 183 | breqtrrd 4061 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 185 | 109 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) ∈ ℝ) |
| 186 | 163 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℝ) |
| 187 | | fz0ssnn0 10191 |
. . . . . . . . . . . . 13
⊢
(0...(𝑚 −
𝑠)) ⊆
ℕ0 |
| 188 | 187 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...(𝑚 − 𝑠)) ⊆
ℕ0) |
| 189 | 106 | adantlr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
| 190 | | nn0z 9346 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ0
→ 𝑗 ∈
ℤ) |
| 191 | 190 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
ℤ) |
| 192 | | 0zd 9338 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ∈
ℤ) |
| 193 | 51 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝑚 − 𝑠) ∈ ℤ) |
| 194 | | fzdcel 10115 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℤ ∧ 0 ∈
ℤ ∧ (𝑚 −
𝑠) ∈ ℤ) →
DECID 𝑗
∈ (0...(𝑚 −
𝑠))) |
| 195 | 191, 192,
193, 194 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) →
DECID 𝑗
∈ (0...(𝑚 −
𝑠))) |
| 196 | 195 | ralrimiva 2570 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ∀𝑗 ∈ ℕ0
DECID 𝑗
∈ (0...(𝑚 −
𝑠))) |
| 197 | 79 | adantlr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) →
(abs‘𝐴) ∈
ℝ) |
| 198 | 110 | adantlr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ≤
(abs‘𝐴)) |
| 199 | 108 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → seq0( + , 𝐾) ∈ dom ⇝ ) |
| 200 | 33, 10, 52, 188, 189, 196, 197, 198, 199 | isumlessdc 11661 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (abs‘𝐴)) |
| 201 | 106 | sumeq2dv 11533 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴)) |
| 202 | 201 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴)) |
| 203 | 200, 202 | breqtrrd 4061 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (𝐾‘𝑗)) |
| 204 | 109 | ltp1d 8957 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
| 205 | 204 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
| 206 | 102, 185,
186, 203, 205 | lelttrd 8151 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
| 207 | 97 | rpregt0d 9778 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2))) |
| 208 | 207 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2))) |
| 209 | | ltmul1 8619 |
. . . . . . . . . 10
⊢
((Σ𝑗 ∈
(0...(𝑚 − 𝑠))(abs‘𝐴) ∈ ℝ ∧ (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1) ∈ ℝ ∧ ((𝐸 / 2) ∈ ℝ ∧ 0
< (𝐸 / 2))) →
(Σ𝑗 ∈
(0...(𝑚 − 𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2)))) |
| 210 | 102, 186,
208, 209 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2)))) |
| 211 | 206, 210 | mpbid 147 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2))) |
| 212 | 113 | rpregt0d 9778 |
. . . . . . . . . 10
⊢ (𝜑 → ((Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1) ∈ ℝ ∧ 0 <
(Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) + 1))) |
| 213 | 212 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈ ℝ ∧ 0 <
(Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) + 1))) |
| 214 | | ltdivmul 8903 |
. . . . . . . . 9
⊢
(((Σ𝑗 ∈
(0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ ∧ (𝐸 / 2) ∈ ℝ ∧
((Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) + 1) ∈ ℝ ∧ 0 <
(Σ𝑗 ∈
ℕ0 (𝐾‘𝑗) + 1))) → (((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2)))) |
| 215 | 103, 99, 213, 214 | syl3anc 1249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) · (𝐸 / 2)))) |
| 216 | 211, 215 | mpbird 167 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚 − 𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) < (𝐸 / 2)) |
| 217 | 84, 115, 99, 184, 216 | lelttrd 8151 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < (𝐸 / 2)) |
| 218 | | mertens.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 219 | 98, 218 | remulcld 8057 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 2) · 𝑃) ∈ ℝ) |
| 220 | | mertens.pge0 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝑃) |
| 221 | 218, 220 | ge0p1rpd 9802 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 + 1) ∈
ℝ+) |
| 222 | 219, 221 | rerpdivcld 9803 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) ∈ ℝ) |
| 223 | 222 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) ∈ ℝ) |
| 224 | 5 | nnrpd 9769 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑠 ∈ ℝ+) |
| 225 | 97, 224 | rpdivcld 9789 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐸 / 2) / 𝑠) ∈
ℝ+) |
| 226 | 225, 221 | rpdivcld 9789 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈
ℝ+) |
| 227 | 226 | rpred 9771 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ) |
| 228 | 227, 218 | remulcld 8057 |
. . . . . . . . . 10
⊢ (𝜑 → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℝ) |
| 229 | 228 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℝ) |
| 230 | | simpll 527 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝜑) |
| 231 | 94, 15 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑗 ∈ ℕ0) |
| 232 | 230, 231,
79 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘𝐴) ∈ ℝ) |
| 233 | 227 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ) |
| 234 | 230, 231,
106 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝐾‘𝑗) = (abs‘𝐴)) |
| 235 | | fveq2 5558 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑗 → (𝐾‘𝑚) = (𝐾‘𝑗)) |
| 236 | 235 | breq1d 4043 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑗 → ((𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ↔ (𝐾‘𝑗) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))) |
| 237 | 7 | simprd 114 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) |
| 238 | 237 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ∀𝑚 ∈ (ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) |
| 239 | | elfzuz 10096 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚) → 𝑗 ∈ (ℤ≥‘((𝑚 − 𝑠) + 1))) |
| 240 | | eluzle 9613 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘(𝑠 + 𝑡)) → (𝑠 + 𝑡) ≤ 𝑚) |
| 241 | 240 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑠 + 𝑡) ≤ 𝑚) |
| 242 | 8 | nn0zd 9446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑡 ∈ ℤ) |
| 243 | 242 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑡 ∈ ℤ) |
| 244 | 243 | zred 9448 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑡 ∈ ℝ) |
| 245 | 56, 244, 55 | leaddsub2d 8574 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑠 + 𝑡) ≤ 𝑚 ↔ 𝑡 ≤ (𝑚 − 𝑠))) |
| 246 | 241, 245 | mpbid 147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑡 ≤ (𝑚 − 𝑠)) |
| 247 | | eluz 9614 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 ∈ ℤ ∧ (𝑚 − 𝑠) ∈ ℤ) → ((𝑚 − 𝑠) ∈ (ℤ≥‘𝑡) ↔ 𝑡 ≤ (𝑚 − 𝑠))) |
| 248 | 243, 72, 247 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑚 − 𝑠) ∈ (ℤ≥‘𝑡) ↔ 𝑡 ≤ (𝑚 − 𝑠))) |
| 249 | 246, 248 | mpbird 167 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ (ℤ≥‘𝑡)) |
| 250 | | peano2uz 9657 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 − 𝑠) ∈ (ℤ≥‘𝑡) → ((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘𝑡)) |
| 251 | 249, 250 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘𝑡)) |
| 252 | | uztrn 9618 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈
(ℤ≥‘((𝑚 − 𝑠) + 1)) ∧ ((𝑚 − 𝑠) + 1) ∈
(ℤ≥‘𝑡)) → 𝑗 ∈ (ℤ≥‘𝑡)) |
| 253 | 239, 251,
252 | syl2anr 290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑗 ∈ (ℤ≥‘𝑡)) |
| 254 | 236, 238,
253 | rspcdva 2873 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝐾‘𝑗) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) |
| 255 | 234, 254 | eqbrtrrd 4057 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘𝐴) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) |
| 256 | 232, 233,
255 | ltled 8145 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) |
| 257 | | breq1 4036 |
. . . . . . . . . . 11
⊢ (𝑤 = (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) → (𝑤 ≤ 𝑃 ↔ (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ 𝑃)) |
| 258 | | mertens.pub |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑃) |
| 259 | 258 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑃) |
| 260 | 55 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑚 ∈ ℝ) |
| 261 | | peano2zm 9364 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ ℤ → (𝑠 − 1) ∈
ℤ) |
| 262 | 49, 261 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑠 − 1) ∈ ℤ) |
| 263 | 262 | zred 9448 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑠 − 1) ∈ ℝ) |
| 264 | 263 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℝ) |
| 265 | 231 | nn0red 9303 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑗 ∈ ℝ) |
| 266 | 12 | zcnd 9449 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑚 ∈ ℂ) |
| 267 | 56 | recnd 8055 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝑠 ∈ ℂ) |
| 268 | | 1cnd 8042 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 1 ∈ ℂ) |
| 269 | 266, 267,
268 | subsubd 8365 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − (𝑠 − 1)) = ((𝑚 − 𝑠) + 1)) |
| 270 | 269 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) = ((𝑚 − 𝑠) + 1)) |
| 271 | | elfzle1 10102 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚) → ((𝑚 − 𝑠) + 1) ≤ 𝑗) |
| 272 | 271 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((𝑚 − 𝑠) + 1) ≤ 𝑗) |
| 273 | 270, 272 | eqbrtrd 4055 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) ≤ 𝑗) |
| 274 | 260, 264,
265, 273 | subled 8575 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − 𝑗) ≤ (𝑠 − 1)) |
| 275 | 94, 19 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − 𝑗) ∈
ℕ0) |
| 276 | 275, 33 | eleqtrdi 2289 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − 𝑗) ∈
(ℤ≥‘0)) |
| 277 | 262 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℤ) |
| 278 | | elfz5 10092 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 − 𝑗) ∈ (ℤ≥‘0)
∧ (𝑠 − 1) ∈
ℤ) → ((𝑚 −
𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚 − 𝑗) ≤ (𝑠 − 1))) |
| 279 | 276, 277,
278 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((𝑚 − 𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚 − 𝑗) ≤ (𝑠 − 1))) |
| 280 | 274, 279 | mpbird 167 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (𝑚 − 𝑗) ∈ (0...(𝑠 − 1))) |
| 281 | | simplll 533 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝜑) |
| 282 | 94, 22 | syldan 282 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
| 283 | 282, 25 | sylan 283 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
| 284 | 281, 283,
27 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → (𝐺‘𝑘) = 𝐵) |
| 285 | 284 | sumeq2dv 11533 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) |
| 286 | 285 | eqcomd 2202 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘)) |
| 287 | 286 | fveq2d 5562 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘))) |
| 288 | 135 | rspceeqv 2886 |
. . . . . . . . . . . . 13
⊢ (((𝑚 − 𝑗) ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))(𝐺‘𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 289 | 280, 287,
288 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 290 | 94, 39 | syldan 282 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 ∈ ℂ) |
| 291 | 290 | abscld 11346 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ) |
| 292 | | eqeq1 2203 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 293 | 292 | rexbidv 2498 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 294 | | mertens.10 |
. . . . . . . . . . . . . 14
⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} |
| 295 | 293, 294 | elab2g 2911 |
. . . . . . . . . . . . 13
⊢
((abs‘Σ𝑘
∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ →
((abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 296 | 291, 295 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 297 | 289, 296 | mpbird 167 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ 𝑇) |
| 298 | 257, 259,
297 | rspcdva 2873 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ 𝑃) |
| 299 | 230, 231,
129 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤
(abs‘𝐴))) |
| 300 | 94, 81 | syldan 282 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ) |
| 301 | 39 | absge0d 11349 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 302 | 94, 301 | syldan 282 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 303 | 300, 302 | jca 306 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤
(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
| 304 | 218 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → 𝑃 ∈ ℝ) |
| 305 | | lemul12a 8889 |
. . . . . . . . . . 11
⊢
(((((abs‘𝐴)
∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ) ∧
(((abs‘Σ𝑘
∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤
(abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∧ 𝑃 ∈ ℝ)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∧ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ 𝑃) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))) |
| 306 | 299, 233,
303, 304, 305 | syl22anc 1250 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∧ (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) ≤ 𝑃) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))) |
| 307 | 256, 298,
306 | mp2and 433 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) |
| 308 | 86, 95, 229, 307 | fsumle 11628 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) |
| 309 | 228 | recnd 8055 |
. . . . . . . . . . 11
⊢ (𝜑 → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ) |
| 310 | 309 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ) |
| 311 | | fsumconst 11619 |
. . . . . . . . . 10
⊢
(((((𝑚 − 𝑠) + 1)...𝑚) ∈ Fin ∧ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = ((♯‘(((𝑚 − 𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))) |
| 312 | 86, 310, 311 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = ((♯‘(((𝑚 − 𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))) |
| 313 | | 1zzd 9353 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 1 ∈ ℤ) |
| 314 | | fzen 10118 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℤ ∧ 𝑠
∈ ℤ ∧ (𝑚
− 𝑠) ∈ ℤ)
→ (1...𝑠) ≈ ((1
+ (𝑚 − 𝑠))...(𝑠 + (𝑚 − 𝑠)))) |
| 315 | 313, 50, 72, 314 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (1...𝑠) ≈ ((1 + (𝑚 − 𝑠))...(𝑠 + (𝑚 − 𝑠)))) |
| 316 | | ax-1cn 7972 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 317 | 72 | zcnd 9449 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ ℂ) |
| 318 | | addcom 8163 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℂ ∧ (𝑚
− 𝑠) ∈ ℂ)
→ (1 + (𝑚 −
𝑠)) = ((𝑚 − 𝑠) + 1)) |
| 319 | 316, 317,
318 | sylancr 414 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (1 + (𝑚 − 𝑠)) = ((𝑚 − 𝑠) + 1)) |
| 320 | 267, 266 | pncan3d 8340 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑠 + (𝑚 − 𝑠)) = 𝑚) |
| 321 | 319, 320 | oveq12d 5940 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((1 + (𝑚 − 𝑠))...(𝑠 + (𝑚 − 𝑠))) = (((𝑚 − 𝑠) + 1)...𝑚)) |
| 322 | 315, 321 | breqtrd 4059 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (1...𝑠) ≈ (((𝑚 − 𝑠) + 1)...𝑚)) |
| 323 | 313, 50 | fzfigd 10523 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (1...𝑠) ∈ Fin) |
| 324 | | hashen 10876 |
. . . . . . . . . . . . 13
⊢
(((1...𝑠) ∈ Fin
∧ (((𝑚 − 𝑠) + 1)...𝑚) ∈ Fin) →
((♯‘(1...𝑠)) =
(♯‘(((𝑚 −
𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚 − 𝑠) + 1)...𝑚))) |
| 325 | 323, 86, 324 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((♯‘(1...𝑠)) = (♯‘(((𝑚 − 𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚 − 𝑠) + 1)...𝑚))) |
| 326 | 322, 325 | mpbird 167 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = (♯‘(((𝑚 − 𝑠) + 1)...𝑚))) |
| 327 | | hashfz1 10875 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ0
→ (♯‘(1...𝑠)) = 𝑠) |
| 328 | 53, 327 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = 𝑠) |
| 329 | 326, 328 | eqtr3d 2231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (♯‘(((𝑚 − 𝑠) + 1)...𝑚)) = 𝑠) |
| 330 | 329 | oveq1d 5937 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((♯‘(((𝑚 − 𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))) |
| 331 | 218 | recnd 8055 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 332 | 221 | rpcnd 9773 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 + 1) ∈ ℂ) |
| 333 | 221 | rpap0d 9777 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 + 1) # 0) |
| 334 | 160, 331,
332, 333 | div23apd 8855 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) = (((𝐸 / 2) / (𝑃 + 1)) · 𝑃)) |
| 335 | 49 | zcnd 9449 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑠 ∈ ℂ) |
| 336 | 225 | rpcnd 9773 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℂ) |
| 337 | 335, 336,
332, 333 | divassapd 8853 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (𝑃 + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))) |
| 338 | 5 | nnap0d 9036 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑠 # 0) |
| 339 | 160, 335,
338 | divcanap2d 8819 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑠 · ((𝐸 / 2) / 𝑠)) = (𝐸 / 2)) |
| 340 | 339 | oveq1d 5937 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (𝑃 + 1)) = ((𝐸 / 2) / (𝑃 + 1))) |
| 341 | 337, 340 | eqtr3d 2231 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) = ((𝐸 / 2) / (𝑃 + 1))) |
| 342 | 341 | oveq1d 5937 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) · 𝑃) = (((𝐸 / 2) / (𝑃 + 1)) · 𝑃)) |
| 343 | 226 | rpcnd 9773 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℂ) |
| 344 | 335, 343,
331 | mulassd 8050 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) · 𝑃) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))) |
| 345 | 334, 342,
344 | 3eqtr2rd 2236 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1))) |
| 346 | 345 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1))) |
| 347 | 312, 330,
346 | 3eqtrd 2233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1))) |
| 348 | 308, 347 | breqtrd 4059 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ≤ (((𝐸 / 2) · 𝑃) / (𝑃 + 1))) |
| 349 | | peano2re 8162 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℝ → (𝑃 + 1) ∈
ℝ) |
| 350 | 218, 349 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 + 1) ∈ ℝ) |
| 351 | 218 | ltp1d 8957 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 < (𝑃 + 1)) |
| 352 | 218, 350,
97, 351 | ltmul2dd 9828 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 2) · 𝑃) < ((𝐸 / 2) · (𝑃 + 1))) |
| 353 | 219, 98, 221 | ltdivmul2d 9824 |
. . . . . . . . 9
⊢ (𝜑 → ((((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2) ↔ ((𝐸 / 2) · 𝑃) < ((𝐸 / 2) · (𝑃 + 1)))) |
| 354 | 352, 353 | mpbird 167 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2)) |
| 355 | 354 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2)) |
| 356 | 96, 223, 99, 348, 355 | lelttrd 8151 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < (𝐸 / 2)) |
| 357 | 84, 96, 99, 99, 217, 356 | lt2addd 8594 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) < ((𝐸 / 2) + (𝐸 / 2))) |
| 358 | 17, 39 | absmuld 11359 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) = ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
| 359 | 358 | sumeq2dv 11533 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) = Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
| 360 | 72 | zred 9448 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) ∈ ℝ) |
| 361 | 360 | ltp1d 8957 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (𝑚 − 𝑠) < ((𝑚 − 𝑠) + 1)) |
| 362 | | fzdisj 10127 |
. . . . . . . 8
⊢ ((𝑚 − 𝑠) < ((𝑚 − 𝑠) + 1) → ((0...(𝑚 − 𝑠)) ∩ (((𝑚 − 𝑠) + 1)...𝑚)) = ∅) |
| 363 | 361, 362 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((0...(𝑚 − 𝑠)) ∩ (((𝑚 − 𝑠) + 1)...𝑚)) = ∅) |
| 364 | | fzsplit 10126 |
. . . . . . . 8
⊢ ((𝑚 − 𝑠) ∈ (0...𝑚) → (0...𝑚) = ((0...(𝑚 − 𝑠)) ∪ (((𝑚 − 𝑠) + 1)...𝑚))) |
| 365 | 70, 364 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (0...𝑚) = ((0...(𝑚 − 𝑠)) ∪ (((𝑚 − 𝑠) + 1)...𝑚))) |
| 366 | 82 | recnd 8055 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) ∈ ℂ) |
| 367 | 363, 365,
13, 366 | fsumsplit 11572 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) = (Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)))) |
| 368 | 359, 367 | eqtr2d 2230 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚 − 𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚 − 𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) = Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
| 369 | 45 | rpcnd 9773 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 370 | 369 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → 𝐸 ∈ ℂ) |
| 371 | 370 | 2halvesd 9237 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸) |
| 372 | 357, 368,
371 | 3brtr3d 4064 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
| 373 | 42, 44, 47, 48, 372 | lelttrd 8151 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
| 374 | 373 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
| 375 | | fveq2 5558 |
. . . 4
⊢ (𝑦 = (𝑠 + 𝑡) → (ℤ≥‘𝑦) =
(ℤ≥‘(𝑠 + 𝑡))) |
| 376 | 375 | raleqdv 2699 |
. . 3
⊢ (𝑦 = (𝑠 + 𝑡) → (∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸 ↔ ∀𝑚 ∈ (ℤ≥‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
| 377 | 376 | rspcev 2868 |
. 2
⊢ (((𝑠 + 𝑡) ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
| 378 | 9, 374, 377 | syl2anc 411 |
1
⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |