ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemi1 GIF version

Theorem mertenslemi1 11498
Description: Lemma for mertensabs 11500. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
mertens.p (𝜑𝑃 ∈ ℝ)
mertens.i12 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))))
mertens.pge0 (𝜑 → 0 ≤ 𝑃)
mertens.pub (𝜑 → ∀𝑤𝑇 𝑤𝑃)
Assertion
Ref Expression
mertenslemi1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝑡,𝑘,𝐴,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑤,𝑗,𝑇,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦   𝑤,𝐵   𝑃,𝑗,𝑚,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑡,𝑛,𝑠)   𝜓(𝑤,𝑠)   𝐴(𝑧,𝑤,𝑗)   𝐵(𝑘)   𝑃(𝑦,𝑧,𝑡,𝑘,𝑛,𝑠)   𝑇(𝑠)   𝐸(𝑤)   𝐹(𝑧,𝑤,𝑡,𝑘,𝑠)   𝐺(𝑤,𝑡)   𝐻(𝑧,𝑤,𝑡,𝑗,𝑛,𝑠)   𝐾(𝑤)

Proof of Theorem mertenslemi1
StepHypRef Expression
1 mertens.i12 . . . . . . 7 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))))
21simpld 111 . . . . . 6 (𝜑𝜓)
3 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
42, 3sylib 121 . . . . 5 (𝜑 → (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
54simpld 111 . . . 4 (𝜑𝑠 ∈ ℕ)
65nnnn0d 9188 . . 3 (𝜑𝑠 ∈ ℕ0)
71simprd 113 . . . 4 (𝜑 → (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))
87simpld 111 . . 3 (𝜑𝑡 ∈ ℕ0)
96, 8nn0addcld 9192 . 2 (𝜑 → (𝑠 + 𝑡) ∈ ℕ0)
10 0zd 9224 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ∈ ℤ)
11 eluzelz 9496 . . . . . . . 8 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → 𝑚 ∈ ℤ)
1211adantl 275 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℤ)
1310, 12fzfigd 10387 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) ∈ Fin)
14 simpl 108 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝜑)
15 elfznn0 10070 . . . . . . . 8 (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0)
16 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
1714, 15, 16syl2an 287 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ)
18 eqid 2170 . . . . . . . 8 (ℤ‘((𝑚𝑗) + 1)) = (ℤ‘((𝑚𝑗) + 1))
19 fznn0sub 10013 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑚) → (𝑚𝑗) ∈ ℕ0)
2019adantl 275 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℕ0)
21 peano2nn0 9175 . . . . . . . . . 10 ((𝑚𝑗) ∈ ℕ0 → ((𝑚𝑗) + 1) ∈ ℕ0)
2220, 21syl 14 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
2322nn0zd 9332 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℤ)
24 simplll 528 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
25 eluznn0 9558 . . . . . . . . . 10 ((((𝑚𝑗) + 1) ∈ ℕ0𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
2622, 25sylan 281 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
27 mertens.4 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
2824, 26, 27syl2anc 409 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
29 mertens.5 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
3024, 26, 29syl2anc 409 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
31 mertens.8 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
3231ad2antrr 485 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ )
33 nn0uz 9521 . . . . . . . . . 10 0 = (ℤ‘0)
34 simpll 524 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑)
3527, 29eqeltrd 2247 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3634, 35sylan 281 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3733, 22, 36iserex 11302 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ))
3832, 37mpbid 146 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
3918, 23, 28, 30, 38isumcl 11388 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
4017, 39mulcld 7940 . . . . . 6 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
4113, 40fsumcl 11363 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
4241abscld 11145 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4340abscld 11145 . . . . 5 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4413, 43fsumrecl 11364 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
45 mertens.9 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
4645rpred 9653 . . . . 5 (𝜑𝐸 ∈ ℝ)
4746adantr 274 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℝ)
4813, 40fsumabs 11428 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
495nnzd 9333 . . . . . . . . . 10 (𝜑𝑠 ∈ ℤ)
5049adantr 274 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℤ)
5112, 50zsubcld 9339 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℤ)
5210, 51fzfigd 10387 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ∈ Fin)
536adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℕ0)
5453nn0ge0d 9191 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ≤ 𝑠)
5512zred 9334 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℝ)
5653nn0red 9189 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℝ)
5755, 56subge02d 8456 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0 ≤ 𝑠 ↔ (𝑚𝑠) ≤ 𝑚))
5854, 57mpbid 146 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ≤ 𝑚)
5953, 33eleqtrdi 2263 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (ℤ‘0))
60 uzid 9501 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → 𝑠 ∈ (ℤ𝑠))
6149, 60syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝑠 ∈ (ℤ𝑠))
62 uzaddcl 9545 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℤ𝑠) ∧ 𝑡 ∈ ℕ0) → (𝑠 + 𝑡) ∈ (ℤ𝑠))
6361, 8, 62syl2anc 409 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 + 𝑡) ∈ (ℤ𝑠))
64 eqid 2170 . . . . . . . . . . . . . . . . 17 (ℤ𝑠) = (ℤ𝑠)
6564uztrn2 9504 . . . . . . . . . . . . . . . 16 (((𝑠 + 𝑡) ∈ (ℤ𝑠) ∧ 𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
6663, 65sylan 281 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
67 elfzuzb 9975 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0...𝑚) ↔ (𝑠 ∈ (ℤ‘0) ∧ 𝑚 ∈ (ℤ𝑠)))
6859, 66, 67sylanbrc 415 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (0...𝑚))
69 fznn0sub2 10084 . . . . . . . . . . . . . 14 (𝑠 ∈ (0...𝑚) → (𝑚𝑠) ∈ (0...𝑚))
7068, 69syl 14 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (0...𝑚))
71 elfzelz 9981 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℤ)
7270, 71syl 14 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℤ)
73 eluz 9500 . . . . . . . . . . . 12 (((𝑚𝑠) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7472, 12, 73syl2anc 409 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7558, 74mpbird 166 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ‘(𝑚𝑠)))
76 fzss2 10020 . . . . . . . . . 10 (𝑚 ∈ (ℤ‘(𝑚𝑠)) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7775, 76syl 14 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7877sselda 3147 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ (0...𝑚))
7916abscld 11145 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
8014, 15, 79syl2an 287 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘𝐴) ∈ ℝ)
8139abscld 11145 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
8280, 81remulcld 7950 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8378, 82syldan 280 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8452, 83fsumrecl 11364 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8551peano2zd 9337 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ ℤ)
8685, 12fzfigd 10387 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ∈ Fin)
87 elfznn0 10070 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℕ0)
8870, 87syl 14 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℕ0)
89 peano2nn0 9175 . . . . . . . . . . . 12 ((𝑚𝑠) ∈ ℕ0 → ((𝑚𝑠) + 1) ∈ ℕ0)
9088, 89syl 14 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ ℕ0)
9190, 33eleqtrdi 2263 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ‘0))
92 fzss1 10019 . . . . . . . . . 10 (((𝑚𝑠) + 1) ∈ (ℤ‘0) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
9391, 92syl 14 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
9493sselda 3147 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (0...𝑚))
9594, 82syldan 280 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9686, 95fsumrecl 11364 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9745rphalfcld 9666 . . . . . . . 8 (𝜑 → (𝐸 / 2) ∈ ℝ+)
9897rpred 9653 . . . . . . 7 (𝜑 → (𝐸 / 2) ∈ ℝ)
9998adantr 274 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℝ)
100 elfznn0 10070 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℕ0)
10114, 100, 79syl2an 287 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℝ)
10252, 101fsumrecl 11364 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ)
103102, 99remulcld 7950 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ)
104 0zd 9224 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
105 eqidd 2171 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
106 mertens.2 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
107106, 79eqeltrd 2247 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
108 mertens.7 . . . . . . . . . . 11 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
10933, 104, 105, 107, 108isumrecl 11392 . . . . . . . . . 10 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
11016absge0d 11148 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
111110, 106breqtrrd 4017 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
11233, 104, 105, 107, 108, 111isumge0 11393 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
113109, 112ge0p1rpd 9684 . . . . . . . . 9 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
114113adantr 274 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
115103, 114rerpdivcld 9685 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
11697, 113rpdivcld 9671 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
117116rpred 9653 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
118117ad2antrr 485 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
119101, 118remulcld 7950 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) ∈ ℝ)
12078, 23syldan 280 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℤ)
121 simplll 528 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
12278, 22syldan 280 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℕ0)
123122, 25sylan 281 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
124121, 123, 27syl2anc 409 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
125121, 123, 29syl2anc 409 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
12678, 38syldan 280 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
12718, 120, 124, 125, 126isumcl 11388 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
128127abscld 11145 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
12979, 110jca 304 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
13014, 100, 129syl2an 287 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
131124sumeq2dv 11331 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
132131fveq2d 5500 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
133 fvoveq1 5876 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚𝑗) → (ℤ‘(𝑛 + 1)) = (ℤ‘((𝑚𝑗) + 1)))
134133sumeq1d 11329 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚𝑗) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
135134fveq2d 5500 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝑗) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
136135breq1d 3999 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝑗) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
1374simprd 113 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
138137ad2antrr 485 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
139 elfzelz 9981 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℤ)
140139adantl 275 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℤ)
141140zred 9334 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℝ)
14211ad2antlr 486 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℤ)
143142zred 9334 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℝ)
14449ad2antrr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℤ)
145144zred 9334 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℝ)
146 elfzle2 9984 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ≤ (𝑚𝑠))
147146adantl 275 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ≤ (𝑚𝑠))
148141, 143, 145, 147lesubd 8468 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ≤ (𝑚𝑗))
149142, 140zsubcld 9339 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ ℤ)
150 eluz 9500 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℤ ∧ (𝑚𝑗) ∈ ℤ) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
151144, 149, 150syl2anc 409 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
152148, 151mpbird 166 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ (ℤ𝑠))
153136, 138, 152rspcdva 2839 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
154132, 153eqbrtrrd 4013 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
155128, 118, 154ltled 8038 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
156 lemul2a 8775 . . . . . . . . . 10 ((((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
157128, 118, 130, 155, 156syl31anc 1236 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
15852, 83, 119, 157fsumle 11426 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
159102recnd 7948 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℂ)
16097rpcnd 9655 . . . . . . . . . . 11 (𝜑 → (𝐸 / 2) ∈ ℂ)
161160adantr 274 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℂ)
162 peano2re 8055 . . . . . . . . . . . . 13 𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
163109, 162syl 14 . . . . . . . . . . . 12 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
164163recnd 7948 . . . . . . . . . . 11 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
165164adantr 274 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
166114rpap0d 9659 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) # 0)
167159, 161, 165, 166divassapd 8743 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
168 fveq2 5496 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
169168cbvsumv 11324 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 (𝐾𝑛) = Σ𝑗 ∈ ℕ0 (𝐾𝑗)
170169oveq1i 5863 . . . . . . . . . . . . . . 15 𝑛 ∈ ℕ0 (𝐾𝑛) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)
171170oveq2i 5864 . . . . . . . . . . . . . 14 ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) = ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
172171, 116eqeltrid 2257 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℝ+)
173172rpcnd 9655 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
174173adantr 274 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
17579recnd 7948 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
17614, 100, 175syl2an 287 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℂ)
17752, 174, 176fsummulc1 11412 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))))
178171oveq2i 5864 . . . . . . . . . 10 𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
179171oveq2i 5864 . . . . . . . . . . . 12 ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
180179a1i 9 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
181180sumeq2i 11327 . . . . . . . . . 10 Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
182177, 178, 1813eqtr3g 2226 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
183167, 182eqtrd 2203 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
184158, 183breqtrrd 4017 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
185109adantr 274 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
186163adantr 274 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
187 fz0ssnn0 10072 . . . . . . . . . . . . 13 (0...(𝑚𝑠)) ⊆ ℕ0
188187a1i 9 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ ℕ0)
189106adantlr 474 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
190 nn0z 9232 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
191190adantl 275 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
192 0zd 9224 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ∈ ℤ)
19351adantr 274 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝑚𝑠) ∈ ℤ)
194 fzdcel 9996 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → DECID 𝑗 ∈ (0...(𝑚𝑠)))
195191, 192, 193, 194syl3anc 1233 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → DECID 𝑗 ∈ (0...(𝑚𝑠)))
196195ralrimiva 2543 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ∀𝑗 ∈ ℕ0 DECID 𝑗 ∈ (0...(𝑚𝑠)))
19779adantlr 474 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
198110adantlr 474 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
199108adantr 274 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → seq0( + , 𝐾) ∈ dom ⇝ )
20033, 10, 52, 188, 189, 196, 197, 198, 199isumlessdc 11459 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (abs‘𝐴))
201106sumeq2dv 11331 . . . . . . . . . . . 12 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
202201adantr 274 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
203200, 202breqtrrd 4017 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
204109ltp1d 8846 . . . . . . . . . . 11 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
205204adantr 274 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
206102, 185, 186, 203, 205lelttrd 8044 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
20797rpregt0d 9660 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
208207adantr 274 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
209 ltmul1 8511 . . . . . . . . . 10 ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ ∧ (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
210102, 186, 208, 209syl3anc 1233 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
211206, 210mpbid 146 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2)))
212113rpregt0d 9660 . . . . . . . . . 10 (𝜑 → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
213212adantr 274 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
214 ltdivmul 8792 . . . . . . . . 9 (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ ∧ (𝐸 / 2) ∈ ℝ ∧ ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
215103, 99, 213, 214syl3anc 1233 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
216211, 215mpbird 166 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2))
21784, 115, 99, 184, 216lelttrd 8044 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
218 mertens.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℝ)
21998, 218remulcld 7950 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · 𝑃) ∈ ℝ)
220 mertens.pge0 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑃)
221218, 220ge0p1rpd 9684 . . . . . . . . 9 (𝜑 → (𝑃 + 1) ∈ ℝ+)
222219, 221rerpdivcld 9685 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) ∈ ℝ)
223222adantr 274 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) ∈ ℝ)
2245nnrpd 9651 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℝ+)
22597, 224rpdivcld 9671 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
226225, 221rpdivcld 9671 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ+)
227226rpred 9653 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ)
228227, 218remulcld 7950 . . . . . . . . . 10 (𝜑 → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℝ)
229228ad2antrr 485 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℝ)
230 simpll 524 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝜑)
23194, 15syl 14 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℕ0)
232230, 231, 79syl2anc 409 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ∈ ℝ)
233227ad2antrr 485 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ)
234230, 231, 106syl2anc 409 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) = (abs‘𝐴))
235 fveq2 5496 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐾𝑚) = (𝐾𝑗))
236235breq1d 3999 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ↔ (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))
2377simprd 113 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
238237ad2antrr 485 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
239 elfzuz 9977 . . . . . . . . . . . . . 14 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → 𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)))
240 eluzle 9499 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → (𝑠 + 𝑡) ≤ 𝑚)
241240adantl 275 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + 𝑡) ≤ 𝑚)
2428nn0zd 9332 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑡 ∈ ℤ)
243242adantr 274 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℤ)
244243zred 9334 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℝ)
24556, 244, 55leaddsub2d 8466 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑠 + 𝑡) ≤ 𝑚𝑡 ≤ (𝑚𝑠)))
246241, 245mpbid 146 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ≤ (𝑚𝑠))
247 eluz 9500 . . . . . . . . . . . . . . . . 17 ((𝑡 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
248243, 72, 247syl2anc 409 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
249246, 248mpbird 166 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (ℤ𝑡))
250 peano2uz 9542 . . . . . . . . . . . . . . 15 ((𝑚𝑠) ∈ (ℤ𝑡) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
251249, 250syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
252 uztrn 9503 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)) ∧ ((𝑚𝑠) + 1) ∈ (ℤ𝑡)) → 𝑗 ∈ (ℤ𝑡))
253239, 251, 252syl2anr 288 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (ℤ𝑡))
254236, 238, 253rspcdva 2839 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
255234, 254eqbrtrrd 4013 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
256232, 233, 255ltled 8038 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
257 breq1 3992 . . . . . . . . . . 11 (𝑤 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (𝑤𝑃 ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃))
258 mertens.pub . . . . . . . . . . . 12 (𝜑 → ∀𝑤𝑇 𝑤𝑃)
259258ad2antrr 485 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∀𝑤𝑇 𝑤𝑃)
26055adantr 274 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑚 ∈ ℝ)
261 peano2zm 9250 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → (𝑠 − 1) ∈ ℤ)
26249, 261syl 14 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑠 − 1) ∈ ℤ)
263262zred 9334 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 − 1) ∈ ℝ)
264263ad2antrr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℝ)
265231nn0red 9189 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℝ)
26612zcnd 9335 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℂ)
26756recnd 7948 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℂ)
268 1cnd 7936 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℂ)
269266, 267, 268subsubd 8258 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
270269adantr 274 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
271 elfzle1 9983 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → ((𝑚𝑠) + 1) ≤ 𝑗)
272271adantl 275 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑠) + 1) ≤ 𝑗)
273270, 272eqbrtrd 4011 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) ≤ 𝑗)
274260, 264, 265, 273subled 8467 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ≤ (𝑠 − 1))
27594, 19syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ ℕ0)
276275, 33eleqtrdi 2263 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (ℤ‘0))
277262ad2antrr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℤ)
278 elfz5 9973 . . . . . . . . . . . . . . 15 (((𝑚𝑗) ∈ (ℤ‘0) ∧ (𝑠 − 1) ∈ ℤ) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
279276, 277, 278syl2anc 409 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
280274, 279mpbird 166 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (0...(𝑠 − 1)))
281 simplll 528 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
28294, 22syldan 280 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
283282, 25sylan 281 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
284281, 283, 27syl2anc 409 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
285284sumeq2dv 11331 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
286285eqcomd 2176 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
287286fveq2d 5500 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
288135rspceeqv 2852 . . . . . . . . . . . . 13 (((𝑚𝑗) ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
289280, 287, 288syl2anc 409 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
29094, 39syldan 280 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
291290abscld 11145 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
292 eqeq1 2177 . . . . . . . . . . . . . . 15 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
293292rexbidv 2471 . . . . . . . . . . . . . 14 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
294 mertens.10 . . . . . . . . . . . . . 14 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
295293, 294elab2g 2877 . . . . . . . . . . . . 13 ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
296291, 295syl 14 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
297289, 296mpbird 166 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇)
298257, 259, 297rspcdva 2839 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃)
299230, 231, 129syl2anc 409 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
30094, 81syldan 280 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
30139absge0d 11148 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
30294, 301syldan 280 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
303300, 302jca 304 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
304218ad2antrr 485 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑃 ∈ ℝ)
305 lemul12a 8778 . . . . . . . . . . 11 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ) ∧ (((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∧ 𝑃 ∈ ℝ)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
306299, 233, 303, 304, 305syl22anc 1234 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
307256, 298, 306mp2and 431 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))
30886, 95, 229, 307fsumle 11426 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))
309228recnd 7948 . . . . . . . . . . 11 (𝜑 → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ)
310309adantr 274 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ)
311 fsumconst 11417 . . . . . . . . . 10 (((((𝑚𝑠) + 1)...𝑚) ∈ Fin ∧ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
31286, 310, 311syl2anc 409 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
313 1zzd 9239 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℤ)
314 fzen 9999 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
315313, 50, 72, 314syl3anc 1233 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
316 ax-1cn 7867 . . . . . . . . . . . . . . 15 1 ∈ ℂ
31772zcnd 9335 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℂ)
318 addcom 8056 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝑚𝑠) ∈ ℂ) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
319316, 317, 318sylancr 412 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
320267, 266pncan3d 8233 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + (𝑚𝑠)) = 𝑚)
321319, 320oveq12d 5871 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))) = (((𝑚𝑠) + 1)...𝑚))
322315, 321breqtrd 4015 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚))
323313, 50fzfigd 10387 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ∈ Fin)
324 hashen 10718 . . . . . . . . . . . . 13 (((1...𝑠) ∈ Fin ∧ (((𝑚𝑠) + 1)...𝑚) ∈ Fin) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
325323, 86, 324syl2anc 409 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
326322, 325mpbird 166 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)))
327 hashfz1 10717 . . . . . . . . . . . 12 (𝑠 ∈ ℕ0 → (♯‘(1...𝑠)) = 𝑠)
32853, 327syl 14 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = 𝑠)
329326, 328eqtr3d 2205 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(((𝑚𝑠) + 1)...𝑚)) = 𝑠)
330329oveq1d 5868 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
331218recnd 7948 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
332221rpcnd 9655 . . . . . . . . . . . 12 (𝜑 → (𝑃 + 1) ∈ ℂ)
333221rpap0d 9659 . . . . . . . . . . . 12 (𝜑 → (𝑃 + 1) # 0)
334160, 331, 332, 333div23apd 8745 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) = (((𝐸 / 2) / (𝑃 + 1)) · 𝑃))
33549zcnd 9335 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℂ)
336225rpcnd 9655 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℂ)
337335, 336, 332, 333divassapd 8743 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (𝑃 + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))
3385nnap0d 8924 . . . . . . . . . . . . . . 15 (𝜑𝑠 # 0)
339160, 335, 338divcanap2d 8709 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 · ((𝐸 / 2) / 𝑠)) = (𝐸 / 2))
340339oveq1d 5868 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (𝑃 + 1)) = ((𝐸 / 2) / (𝑃 + 1)))
341337, 340eqtr3d 2205 . . . . . . . . . . . 12 (𝜑 → (𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) = ((𝐸 / 2) / (𝑃 + 1)))
342341oveq1d 5868 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) · 𝑃) = (((𝐸 / 2) / (𝑃 + 1)) · 𝑃))
343226rpcnd 9655 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℂ)
344335, 343, 331mulassd 7943 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) · 𝑃) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
345334, 342, 3443eqtr2rd 2210 . . . . . . . . . 10 (𝜑 → (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
346345adantr 274 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
347312, 330, 3463eqtrd 2207 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
348308, 347breqtrd 4015 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
349 peano2re 8055 . . . . . . . . . . 11 (𝑃 ∈ ℝ → (𝑃 + 1) ∈ ℝ)
350218, 349syl 14 . . . . . . . . . 10 (𝜑 → (𝑃 + 1) ∈ ℝ)
351218ltp1d 8846 . . . . . . . . . 10 (𝜑𝑃 < (𝑃 + 1))
352218, 350, 97, 351ltmul2dd 9710 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · 𝑃) < ((𝐸 / 2) · (𝑃 + 1)))
353219, 98, 221ltdivmul2d 9706 . . . . . . . . 9 (𝜑 → ((((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2) ↔ ((𝐸 / 2) · 𝑃) < ((𝐸 / 2) · (𝑃 + 1))))
354352, 353mpbird 166 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2))
355354adantr 274 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2))
35696, 223, 99, 348, 355lelttrd 8044 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
35784, 96, 99, 99, 217, 356lt2addd 8486 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) < ((𝐸 / 2) + (𝐸 / 2)))
35817, 39absmuld 11158 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
359358sumeq2dv 11331 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
36072zred 9334 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℝ)
361360ltp1d 8846 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) < ((𝑚𝑠) + 1))
362 fzdisj 10008 . . . . . . . 8 ((𝑚𝑠) < ((𝑚𝑠) + 1) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
363361, 362syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
364 fzsplit 10007 . . . . . . . 8 ((𝑚𝑠) ∈ (0...𝑚) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
36570, 364syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
36682recnd 7948 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℂ)
367363, 365, 13, 366fsumsplit 11370 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))))
368359, 367eqtr2d 2204 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) = Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
36945rpcnd 9655 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
370369adantr 274 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℂ)
3713702halvesd 9123 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
372357, 368, 3713brtr3d 4020 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
37342, 44, 47, 48, 372lelttrd 8044 . . 3 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
374373ralrimiva 2543 . 2 (𝜑 → ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
375 fveq2 5496 . . . 4 (𝑦 = (𝑠 + 𝑡) → (ℤ𝑦) = (ℤ‘(𝑠 + 𝑡)))
376375raleqdv 2671 . . 3 (𝑦 = (𝑠 + 𝑡) → (∀𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸 ↔ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
377376rspcev 2834 . 2 (((𝑠 + 𝑡) ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
3789, 374, 377syl2anc 409 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 829   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  cun 3119  cin 3120  wss 3121  c0 3414   class class class wbr 3989  dom cdm 4611  cfv 5198  (class class class)co 5853  cen 6716  Fincfn 6718  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090   / cdiv 8589  cn 8878  2c2 8929  0cn0 9135  cz 9212  cuz 9487  +crp 9610  ...cfz 9965  seqcseq 10401  chash 10709  abscabs 10961  cli 11241  Σcsu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  mertenslem2  11499
  Copyright terms: Public domain W3C validator