ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemi1 GIF version

Theorem mertenslemi1 11961
Description: Lemma for mertensabs 11963. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
mertens.p (𝜑𝑃 ∈ ℝ)
mertens.i12 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))))
mertens.pge0 (𝜑 → 0 ≤ 𝑃)
mertens.pub (𝜑 → ∀𝑤𝑇 𝑤𝑃)
Assertion
Ref Expression
mertenslemi1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝑡,𝑘,𝐴,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑡,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑤,𝑗,𝑇,𝑘,𝑚,𝑛,𝑡,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦   𝑤,𝐵   𝑃,𝑗,𝑚,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑡,𝑛,𝑠)   𝜓(𝑤,𝑠)   𝐴(𝑧,𝑤,𝑗)   𝐵(𝑘)   𝑃(𝑦,𝑧,𝑡,𝑘,𝑛,𝑠)   𝑇(𝑠)   𝐸(𝑤)   𝐹(𝑧,𝑤,𝑡,𝑘,𝑠)   𝐺(𝑤,𝑡)   𝐻(𝑧,𝑤,𝑡,𝑗,𝑛,𝑠)   𝐾(𝑤)

Proof of Theorem mertenslemi1
StepHypRef Expression
1 mertens.i12 . . . . . . 7 (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))))
21simpld 112 . . . . . 6 (𝜑𝜓)
3 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
42, 3sylib 122 . . . . 5 (𝜑 → (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
54simpld 112 . . . 4 (𝜑𝑠 ∈ ℕ)
65nnnn0d 9383 . . 3 (𝜑𝑠 ∈ ℕ0)
71simprd 114 . . . 4 (𝜑 → (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))
87simpld 112 . . 3 (𝜑𝑡 ∈ ℕ0)
96, 8nn0addcld 9387 . 2 (𝜑 → (𝑠 + 𝑡) ∈ ℕ0)
10 0zd 9419 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ∈ ℤ)
11 eluzelz 9692 . . . . . . . 8 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → 𝑚 ∈ ℤ)
1211adantl 277 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℤ)
1310, 12fzfigd 10613 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) ∈ Fin)
14 simpl 109 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝜑)
15 elfznn0 10271 . . . . . . . 8 (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0)
16 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
1714, 15, 16syl2an 289 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ)
18 eqid 2207 . . . . . . . 8 (ℤ‘((𝑚𝑗) + 1)) = (ℤ‘((𝑚𝑗) + 1))
19 fznn0sub 10214 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑚) → (𝑚𝑗) ∈ ℕ0)
2019adantl 277 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℕ0)
21 peano2nn0 9370 . . . . . . . . . 10 ((𝑚𝑗) ∈ ℕ0 → ((𝑚𝑗) + 1) ∈ ℕ0)
2220, 21syl 14 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
2322nn0zd 9528 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℤ)
24 simplll 533 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
25 eluznn0 9755 . . . . . . . . . 10 ((((𝑚𝑗) + 1) ∈ ℕ0𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
2622, 25sylan 283 . . . . . . . . 9 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
27 mertens.4 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
2824, 26, 27syl2anc 411 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
29 mertens.5 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
3024, 26, 29syl2anc 411 . . . . . . . 8 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
31 mertens.8 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
3231ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ )
33 nn0uz 9718 . . . . . . . . . 10 0 = (ℤ‘0)
34 simpll 527 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑)
3527, 29eqeltrd 2284 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3634, 35sylan 283 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3733, 22, 36iserex 11765 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ))
3832, 37mpbid 147 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
3918, 23, 28, 30, 38isumcl 11851 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
4017, 39mulcld 8128 . . . . . 6 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
4113, 40fsumcl 11826 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℂ)
4241abscld 11607 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4340abscld 11607 . . . . 5 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
4413, 43fsumrecl 11827 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
45 mertens.9 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
4645rpred 9853 . . . . 5 (𝜑𝐸 ∈ ℝ)
4746adantr 276 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℝ)
4813, 40fsumabs 11891 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
495nnzd 9529 . . . . . . . . . 10 (𝜑𝑠 ∈ ℤ)
5049adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℤ)
5112, 50zsubcld 9535 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℤ)
5210, 51fzfigd 10613 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ∈ Fin)
536adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℕ0)
5453nn0ge0d 9386 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 0 ≤ 𝑠)
5512zred 9530 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℝ)
5653nn0red 9384 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℝ)
5755, 56subge02d 8645 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0 ≤ 𝑠 ↔ (𝑚𝑠) ≤ 𝑚))
5854, 57mpbid 147 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ≤ 𝑚)
5953, 33eleqtrdi 2300 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (ℤ‘0))
60 uzid 9697 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → 𝑠 ∈ (ℤ𝑠))
6149, 60syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝑠 ∈ (ℤ𝑠))
62 uzaddcl 9742 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℤ𝑠) ∧ 𝑡 ∈ ℕ0) → (𝑠 + 𝑡) ∈ (ℤ𝑠))
6361, 8, 62syl2anc 411 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 + 𝑡) ∈ (ℤ𝑠))
64 eqid 2207 . . . . . . . . . . . . . . . . 17 (ℤ𝑠) = (ℤ𝑠)
6564uztrn2 9701 . . . . . . . . . . . . . . . 16 (((𝑠 + 𝑡) ∈ (ℤ𝑠) ∧ 𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
6663, 65sylan 283 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ𝑠))
67 elfzuzb 10176 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0...𝑚) ↔ (𝑠 ∈ (ℤ‘0) ∧ 𝑚 ∈ (ℤ𝑠)))
6859, 66, 67sylanbrc 417 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ (0...𝑚))
69 fznn0sub2 10285 . . . . . . . . . . . . . 14 (𝑠 ∈ (0...𝑚) → (𝑚𝑠) ∈ (0...𝑚))
7068, 69syl 14 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (0...𝑚))
71 elfzelz 10182 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℤ)
7270, 71syl 14 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℤ)
73 eluz 9696 . . . . . . . . . . . 12 (((𝑚𝑠) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7472, 12, 73syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 ∈ (ℤ‘(𝑚𝑠)) ↔ (𝑚𝑠) ≤ 𝑚))
7558, 74mpbird 167 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ (ℤ‘(𝑚𝑠)))
76 fzss2 10221 . . . . . . . . . 10 (𝑚 ∈ (ℤ‘(𝑚𝑠)) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7775, 76syl 14 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ (0...𝑚))
7877sselda 3201 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ (0...𝑚))
7916abscld 11607 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
8014, 15, 79syl2an 289 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘𝐴) ∈ ℝ)
8139abscld 11607 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
8280, 81remulcld 8138 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8378, 82syldan 282 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8452, 83fsumrecl 11827 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
8551peano2zd 9533 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ ℤ)
8685, 12fzfigd 10613 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ∈ Fin)
87 elfznn0 10271 . . . . . . . . . . . . 13 ((𝑚𝑠) ∈ (0...𝑚) → (𝑚𝑠) ∈ ℕ0)
8870, 87syl 14 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℕ0)
89 peano2nn0 9370 . . . . . . . . . . . 12 ((𝑚𝑠) ∈ ℕ0 → ((𝑚𝑠) + 1) ∈ ℕ0)
9088, 89syl 14 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ ℕ0)
9190, 33eleqtrdi 2300 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ‘0))
92 fzss1 10220 . . . . . . . . . 10 (((𝑚𝑠) + 1) ∈ (ℤ‘0) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
9391, 92syl 14 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝑚𝑠) + 1)...𝑚) ⊆ (0...𝑚))
9493sselda 3201 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (0...𝑚))
9594, 82syldan 282 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9686, 95fsumrecl 11827 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℝ)
9745rphalfcld 9866 . . . . . . . 8 (𝜑 → (𝐸 / 2) ∈ ℝ+)
9897rpred 9853 . . . . . . 7 (𝜑 → (𝐸 / 2) ∈ ℝ)
9998adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℝ)
100 elfznn0 10271 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℕ0)
10114, 100, 79syl2an 289 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℝ)
10252, 101fsumrecl 11827 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ)
103102, 99remulcld 8138 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ)
104 0zd 9419 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
105 eqidd 2208 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
106 mertens.2 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
107106, 79eqeltrd 2284 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
108 mertens.7 . . . . . . . . . . 11 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
10933, 104, 105, 107, 108isumrecl 11855 . . . . . . . . . 10 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
11016absge0d 11610 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
111110, 106breqtrrd 4087 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
11233, 104, 105, 107, 108, 111isumge0 11856 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
113109, 112ge0p1rpd 9884 . . . . . . . . 9 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
114113adantr 276 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
115103, 114rerpdivcld 9885 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
11697, 113rpdivcld 9871 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
117116rpred 9853 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
118117ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ)
119101, 118remulcld 8138 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) ∈ ℝ)
12078, 23syldan 282 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℤ)
121 simplll 533 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
12278, 22syldan 282 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) + 1) ∈ ℕ0)
123122, 25sylan 283 . . . . . . . . . . . . 13 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
124121, 123, 27syl2anc 411 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
125121, 123, 29syl2anc 411 . . . . . . . . . . . 12 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
12678, 38syldan 282 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
12718, 120, 124, 125, 126isumcl 11851 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
128127abscld 11607 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
12979, 110jca 306 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
13014, 100, 129syl2an 289 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
131124sumeq2dv 11794 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
132131fveq2d 5603 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
133 fvoveq1 5990 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚𝑗) → (ℤ‘(𝑛 + 1)) = (ℤ‘((𝑚𝑗) + 1)))
134133sumeq1d 11792 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚𝑗) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
135134fveq2d 5603 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝑗) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
136135breq1d 4069 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝑗) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
1374simprd 114 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
138137ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
139 elfzelz 10182 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ∈ ℤ)
140139adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℤ)
141140zred 9530 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ∈ ℝ)
14211ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℤ)
143142zred 9530 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑚 ∈ ℝ)
14449ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℤ)
145144zred 9530 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ∈ ℝ)
146 elfzle2 10185 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...(𝑚𝑠)) → 𝑗 ≤ (𝑚𝑠))
147146adantl 277 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑗 ≤ (𝑚𝑠))
148141, 143, 145, 147lesubd 8657 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → 𝑠 ≤ (𝑚𝑗))
149142, 140zsubcld 9535 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ ℤ)
150 eluz 9696 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℤ ∧ (𝑚𝑗) ∈ ℤ) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
151144, 149, 150syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((𝑚𝑗) ∈ (ℤ𝑠) ↔ 𝑠 ≤ (𝑚𝑗)))
152148, 151mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (𝑚𝑗) ∈ (ℤ𝑠))
153136, 138, 152rspcdva 2889 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
154132, 153eqbrtrrd 4083 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
155128, 118, 154ltled 8226 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
156 lemul2a 8967 . . . . . . . . . 10 ((((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
157128, 118, 130, 155, 156syl31anc 1253 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
15852, 83, 119, 157fsumle 11889 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
159102recnd 8136 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℂ)
16097rpcnd 9855 . . . . . . . . . . 11 (𝜑 → (𝐸 / 2) ∈ ℂ)
161160adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝐸 / 2) ∈ ℂ)
162 peano2re 8243 . . . . . . . . . . . . 13 𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
163109, 162syl 14 . . . . . . . . . . . 12 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
164163recnd 8136 . . . . . . . . . . 11 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
165164adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℂ)
166114rpap0d 9859 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) # 0)
167159, 161, 165, 166divassapd 8934 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
168 fveq2 5599 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
169168cbvsumv 11787 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 (𝐾𝑛) = Σ𝑗 ∈ ℕ0 (𝐾𝑗)
170169oveq1i 5977 . . . . . . . . . . . . . . 15 𝑛 ∈ ℕ0 (𝐾𝑛) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)
171170oveq2i 5978 . . . . . . . . . . . . . 14 ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) = ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
172171, 116eqeltrid 2294 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℝ+)
173172rpcnd 9855 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
174173adantr 276 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1)) ∈ ℂ)
17579recnd 8136 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
17614, 100, 175syl2an 289 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...(𝑚𝑠))) → (abs‘𝐴) ∈ ℂ)
17752, 174, 176fsummulc1 11875 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))))
178171oveq2i 5978 . . . . . . . . . 10 𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
179171oveq2i 5978 . . . . . . . . . . . 12 ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
180179a1i 9 . . . . . . . . . . 11 (𝑗 ∈ (0...(𝑚𝑠)) → ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = ((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
181180sumeq2i 11790 . . . . . . . . . 10 Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑛 ∈ ℕ0 (𝐾𝑛) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
182177, 178, 1813eqtr3g 2263 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
183167, 182eqtrd 2240 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) = Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
184158, 183breqtrrd 4087 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
185109adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
186163adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ)
187 fz0ssnn0 10273 . . . . . . . . . . . . 13 (0...(𝑚𝑠)) ⊆ ℕ0
188187a1i 9 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...(𝑚𝑠)) ⊆ ℕ0)
189106adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
190 nn0z 9427 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
191190adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
192 0zd 9419 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ∈ ℤ)
19351adantr 276 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (𝑚𝑠) ∈ ℤ)
194 fzdcel 10197 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → DECID 𝑗 ∈ (0...(𝑚𝑠)))
195191, 192, 193, 194syl3anc 1250 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → DECID 𝑗 ∈ (0...(𝑚𝑠)))
196195ralrimiva 2581 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ∀𝑗 ∈ ℕ0 DECID 𝑗 ∈ (0...(𝑚𝑠)))
19779adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
198110adantlr 477 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
199108adantr 276 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → seq0( + , 𝐾) ∈ dom ⇝ )
20033, 10, 52, 188, 189, 196, 197, 198, 199isumlessdc 11922 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (abs‘𝐴))
201106sumeq2dv 11794 . . . . . . . . . . . 12 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
202201adantr 276 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) = Σ𝑗 ∈ ℕ0 (abs‘𝐴))
203200, 202breqtrrd 4087 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
204109ltp1d 9038 . . . . . . . . . . 11 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
205204adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ ℕ0 (𝐾𝑗) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
206102, 185, 186, 203, 205lelttrd 8232 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
20797rpregt0d 9860 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
208207adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2)))
209 ltmul1 8700 . . . . . . . . . 10 ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) ∈ ℝ ∧ (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ ((𝐸 / 2) ∈ ℝ ∧ 0 < (𝐸 / 2))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
210102, 186, 208, 209syl3anc 1250 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
211206, 210mpbid 147 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2)))
212113rpregt0d 9860 . . . . . . . . . 10 (𝜑 → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
213212adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
214 ltdivmul 8984 . . . . . . . . 9 (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) ∈ ℝ ∧ (𝐸 / 2) ∈ ℝ ∧ ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ ∧ 0 < (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
215103, 99, 213, 214syl3anc 1250 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2) ↔ (Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) < ((Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) · (𝐸 / 2))))
216211, 215mpbird 167 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((Σ𝑗 ∈ (0...(𝑚𝑠))(abs‘𝐴) · (𝐸 / 2)) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) < (𝐸 / 2))
21784, 115, 99, 184, 216lelttrd 8232 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
218 mertens.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℝ)
21998, 218remulcld 8138 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · 𝑃) ∈ ℝ)
220 mertens.pge0 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑃)
221218, 220ge0p1rpd 9884 . . . . . . . . 9 (𝜑 → (𝑃 + 1) ∈ ℝ+)
222219, 221rerpdivcld 9885 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) ∈ ℝ)
223222adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) ∈ ℝ)
2245nnrpd 9851 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℝ+)
22597, 224rpdivcld 9871 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
226225, 221rpdivcld 9871 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ+)
227226rpred 9853 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ)
228227, 218remulcld 8138 . . . . . . . . . 10 (𝜑 → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℝ)
229228ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℝ)
230 simpll 527 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝜑)
23194, 15syl 14 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℕ0)
232230, 231, 79syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ∈ ℝ)
233227ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ)
234230, 231, 106syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) = (abs‘𝐴))
235 fveq2 5599 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐾𝑚) = (𝐾𝑗))
236235breq1d 4069 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ↔ (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))
2377simprd 114 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
238237ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
239 elfzuz 10178 . . . . . . . . . . . . . 14 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → 𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)))
240 eluzle 9695 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ‘(𝑠 + 𝑡)) → (𝑠 + 𝑡) ≤ 𝑚)
241240adantl 277 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + 𝑡) ≤ 𝑚)
2428nn0zd 9528 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑡 ∈ ℤ)
243242adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℤ)
244243zred 9530 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ∈ ℝ)
24556, 244, 55leaddsub2d 8655 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑠 + 𝑡) ≤ 𝑚𝑡 ≤ (𝑚𝑠)))
246241, 245mpbid 147 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑡 ≤ (𝑚𝑠))
247 eluz 9696 . . . . . . . . . . . . . . . . 17 ((𝑡 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
248243, 72, 247syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) ∈ (ℤ𝑡) ↔ 𝑡 ≤ (𝑚𝑠)))
249246, 248mpbird 167 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ (ℤ𝑡))
250 peano2uz 9739 . . . . . . . . . . . . . . 15 ((𝑚𝑠) ∈ (ℤ𝑡) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
251249, 250syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝑚𝑠) + 1) ∈ (ℤ𝑡))
252 uztrn 9700 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ‘((𝑚𝑠) + 1)) ∧ ((𝑚𝑠) + 1) ∈ (ℤ𝑡)) → 𝑗 ∈ (ℤ𝑡))
253239, 251, 252syl2anr 290 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ (ℤ𝑡))
254236, 238, 253rspcdva 2889 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝐾𝑗) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
255234, 254eqbrtrrd 4083 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
256232, 233, 255ltled 8226 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)))
257 breq1 4062 . . . . . . . . . . 11 (𝑤 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (𝑤𝑃 ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃))
258 mertens.pub . . . . . . . . . . . 12 (𝜑 → ∀𝑤𝑇 𝑤𝑃)
259258ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∀𝑤𝑇 𝑤𝑃)
26055adantr 276 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑚 ∈ ℝ)
261 peano2zm 9445 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℤ → (𝑠 − 1) ∈ ℤ)
26249, 261syl 14 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑠 − 1) ∈ ℤ)
263262zred 9530 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑠 − 1) ∈ ℝ)
264263ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℝ)
265231nn0red 9384 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑗 ∈ ℝ)
26612zcnd 9531 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑚 ∈ ℂ)
26756recnd 8136 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝑠 ∈ ℂ)
268 1cnd 8123 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℂ)
269266, 267, 268subsubd 8446 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
270269adantr 276 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) = ((𝑚𝑠) + 1))
271 elfzle1 10184 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (((𝑚𝑠) + 1)...𝑚) → ((𝑚𝑠) + 1) ≤ 𝑗)
272271adantl 277 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑠) + 1) ≤ 𝑗)
273270, 272eqbrtrd 4081 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚 − (𝑠 − 1)) ≤ 𝑗)
274260, 264, 265, 273subled 8656 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ≤ (𝑠 − 1))
27594, 19syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ ℕ0)
276275, 33eleqtrdi 2300 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (ℤ‘0))
277262ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑠 − 1) ∈ ℤ)
278 elfz5 10174 . . . . . . . . . . . . . . 15 (((𝑚𝑗) ∈ (ℤ‘0) ∧ (𝑠 − 1) ∈ ℤ) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
279276, 277, 278syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) ∈ (0...(𝑠 − 1)) ↔ (𝑚𝑗) ≤ (𝑠 − 1)))
280274, 279mpbird 167 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (𝑚𝑗) ∈ (0...(𝑠 − 1)))
281 simplll 533 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
28294, 22syldan 282 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
283282, 25sylan 283 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
284281, 283, 27syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
285284sumeq2dv 11794 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
286285eqcomd 2213 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))
287286fveq2d 5603 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘)))
288135rspceeqv 2902 . . . . . . . . . . . . 13 (((𝑚𝑗) ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))(𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
289280, 287, 288syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
29094, 39syldan 282 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
291290abscld 11607 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
292 eqeq1 2214 . . . . . . . . . . . . . . 15 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
293292rexbidv 2509 . . . . . . . . . . . . . 14 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
294 mertens.10 . . . . . . . . . . . . . 14 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
295293, 294elab2g 2927 . . . . . . . . . . . . 13 ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
296291, 295syl 14 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
297289, 296mpbird 167 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ 𝑇)
298257, 259, 297rspcdva 2889 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃)
299230, 231, 129syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
30094, 81syldan 282 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ)
30139absge0d 11610 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
30294, 301syldan 282 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
303300, 302jca 306 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
304218ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → 𝑃 ∈ ℝ)
305 lemul12a 8970 . . . . . . . . . . 11 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℝ) ∧ (((abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ∈ ℝ ∧ 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∧ 𝑃 ∈ ℝ)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
306299, 233, 303, 304, 305syl22anc 1251 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → (((abs‘𝐴) ≤ (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∧ (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) ≤ 𝑃) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
307256, 298, 306mp2and 433 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))
30886, 95, 229, 307fsumle 11889 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃))
309228recnd 8136 . . . . . . . . . . 11 (𝜑 → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ)
310309adantr 276 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ)
311 fsumconst 11880 . . . . . . . . . 10 (((((𝑚𝑠) + 1)...𝑚) ∈ Fin ∧ ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) ∈ ℂ) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
31286, 310, 311syl2anc 411 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
313 1zzd 9434 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 1 ∈ ℤ)
314 fzen 10200 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ (𝑚𝑠) ∈ ℤ) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
315313, 50, 72, 314syl3anc 1250 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))))
316 ax-1cn 8053 . . . . . . . . . . . . . . 15 1 ∈ ℂ
31772zcnd 9531 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℂ)
318 addcom 8244 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝑚𝑠) ∈ ℂ) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
319316, 317, 318sylancr 414 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1 + (𝑚𝑠)) = ((𝑚𝑠) + 1))
320267, 266pncan3d 8421 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 + (𝑚𝑠)) = 𝑚)
321319, 320oveq12d 5985 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((1 + (𝑚𝑠))...(𝑠 + (𝑚𝑠))) = (((𝑚𝑠) + 1)...𝑚))
322315, 321breqtrd 4085 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚))
323313, 50fzfigd 10613 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (1...𝑠) ∈ Fin)
324 hashen 10966 . . . . . . . . . . . . 13 (((1...𝑠) ∈ Fin ∧ (((𝑚𝑠) + 1)...𝑚) ∈ Fin) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
325323, 86, 324syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)) ↔ (1...𝑠) ≈ (((𝑚𝑠) + 1)...𝑚)))
326322, 325mpbird 167 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = (♯‘(((𝑚𝑠) + 1)...𝑚)))
327 hashfz1 10965 . . . . . . . . . . . 12 (𝑠 ∈ ℕ0 → (♯‘(1...𝑠)) = 𝑠)
32853, 327syl 14 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(1...𝑠)) = 𝑠)
329326, 328eqtr3d 2242 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (♯‘(((𝑚𝑠) + 1)...𝑚)) = 𝑠)
330329oveq1d 5982 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((♯‘(((𝑚𝑠) + 1)...𝑚)) · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
331218recnd 8136 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
332221rpcnd 9855 . . . . . . . . . . . 12 (𝜑 → (𝑃 + 1) ∈ ℂ)
333221rpap0d 9859 . . . . . . . . . . . 12 (𝜑 → (𝑃 + 1) # 0)
334160, 331, 332, 333div23apd 8936 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) = (((𝐸 / 2) / (𝑃 + 1)) · 𝑃))
33549zcnd 9531 . . . . . . . . . . . . . 14 (𝜑𝑠 ∈ ℂ)
336225rpcnd 9855 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸 / 2) / 𝑠) ∈ ℂ)
337335, 336, 332, 333divassapd 8934 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (𝑃 + 1)) = (𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))
3385nnap0d 9117 . . . . . . . . . . . . . . 15 (𝜑𝑠 # 0)
339160, 335, 338divcanap2d 8900 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 · ((𝐸 / 2) / 𝑠)) = (𝐸 / 2))
340339oveq1d 5982 . . . . . . . . . . . . 13 (𝜑 → ((𝑠 · ((𝐸 / 2) / 𝑠)) / (𝑃 + 1)) = ((𝐸 / 2) / (𝑃 + 1)))
341337, 340eqtr3d 2242 . . . . . . . . . . . 12 (𝜑 → (𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) = ((𝐸 / 2) / (𝑃 + 1)))
342341oveq1d 5982 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) · 𝑃) = (((𝐸 / 2) / (𝑃 + 1)) · 𝑃))
343226rpcnd 9855 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 2) / 𝑠) / (𝑃 + 1)) ∈ ℂ)
344335, 343, 331mulassd 8131 . . . . . . . . . . 11 (𝜑 → ((𝑠 · (((𝐸 / 2) / 𝑠) / (𝑃 + 1))) · 𝑃) = (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)))
345334, 342, 3443eqtr2rd 2247 . . . . . . . . . 10 (𝜑 → (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
346345adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑠 · ((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃)) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
347312, 330, 3463eqtrd 2244 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((((𝐸 / 2) / 𝑠) / (𝑃 + 1)) · 𝑃) = (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
348308, 347breqtrd 4085 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ≤ (((𝐸 / 2) · 𝑃) / (𝑃 + 1)))
349 peano2re 8243 . . . . . . . . . . 11 (𝑃 ∈ ℝ → (𝑃 + 1) ∈ ℝ)
350218, 349syl 14 . . . . . . . . . 10 (𝜑 → (𝑃 + 1) ∈ ℝ)
351218ltp1d 9038 . . . . . . . . . 10 (𝜑𝑃 < (𝑃 + 1))
352218, 350, 97, 351ltmul2dd 9910 . . . . . . . . 9 (𝜑 → ((𝐸 / 2) · 𝑃) < ((𝐸 / 2) · (𝑃 + 1)))
353219, 98, 221ltdivmul2d 9906 . . . . . . . . 9 (𝜑 → ((((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2) ↔ ((𝐸 / 2) · 𝑃) < ((𝐸 / 2) · (𝑃 + 1))))
354352, 353mpbird 167 . . . . . . . 8 (𝜑 → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2))
355354adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (((𝐸 / 2) · 𝑃) / (𝑃 + 1)) < (𝐸 / 2))
35696, 223, 99, 348, 355lelttrd 8232 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < (𝐸 / 2))
35784, 96, 99, 99, 217, 356lt2addd 8675 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) < ((𝐸 / 2) + (𝐸 / 2)))
35817, 39absmuld 11620 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → (abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
359358sumeq2dv 11794 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
36072zred 9530 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) ∈ ℝ)
361360ltp1d 9038 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (𝑚𝑠) < ((𝑚𝑠) + 1))
362 fzdisj 10209 . . . . . . . 8 ((𝑚𝑠) < ((𝑚𝑠) + 1) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
363361, 362syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((0...(𝑚𝑠)) ∩ (((𝑚𝑠) + 1)...𝑚)) = ∅)
364 fzsplit 10208 . . . . . . . 8 ((𝑚𝑠) ∈ (0...𝑚) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
36570, 364syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (0...𝑚) = ((0...(𝑚𝑠)) ∪ (((𝑚𝑠) + 1)...𝑚)))
36682recnd 8136 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) ∧ 𝑗 ∈ (0...𝑚)) → ((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) ∈ ℂ)
367363, 365, 13, 366fsumsplit 11833 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) = (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))))
368359, 367eqtr2d 2241 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (Σ𝑗 ∈ (0...(𝑚𝑠))((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) + Σ𝑗 ∈ (((𝑚𝑠) + 1)...𝑚)((abs‘𝐴) · (abs‘Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))) = Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
36945rpcnd 9855 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
370369adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → 𝐸 ∈ ℂ)
3713702halvesd 9318 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
372357, 368, 3713brtr3d 4090 . . . 4 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → Σ𝑗 ∈ (0...𝑚)(abs‘(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
37342, 44, 47, 48, 372lelttrd 8232 . . 3 ((𝜑𝑚 ∈ (ℤ‘(𝑠 + 𝑡))) → (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
374373ralrimiva 2581 . 2 (𝜑 → ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
375 fveq2 5599 . . . 4 (𝑦 = (𝑠 + 𝑡) → (ℤ𝑦) = (ℤ‘(𝑠 + 𝑡)))
376375raleqdv 2711 . . 3 (𝑦 = (𝑠 + 𝑡) → (∀𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸 ↔ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
377376rspcev 2884 . 2 (((𝑠 + 𝑡) ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ‘(𝑠 + 𝑡))(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
3789, 374, 377syl2anc 411 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2178  {cab 2193  wral 2486  wrex 2487  cun 3172  cin 3173  wss 3174  c0 3468   class class class wbr 4059  dom cdm 4693  cfv 5290  (class class class)co 5967  cen 6848  Fincfn 6850  cc 7958  cr 7959  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965   < clt 8142  cle 8143  cmin 8278   / cdiv 8780  cn 9071  2c2 9122  0cn0 9330  cz 9407  cuz 9683  +crp 9810  ...cfz 10165  seqcseq 10629  chash 10957  abscabs 11423  cli 11704  Σcsu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  mertenslem2  11962
  Copyright terms: Public domain W3C validator