![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cores2 | GIF version |
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
Ref | Expression |
---|---|
cores2 | ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 4837 | . . . . . 6 ⊢ dom 𝐴 = ran ◡𝐴 | |
2 | 1 | sseq1i 3196 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐶 ↔ ran ◡𝐴 ⊆ 𝐶) |
3 | cores 5150 | . . . . 5 ⊢ (ran ◡𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) | |
4 | 2, 3 | sylbi 121 | . . . 4 ⊢ (dom 𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) |
5 | cnvco 4830 | . . . . 5 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
6 | cocnvcnv1 5157 | . . . . 5 ⊢ (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
7 | 5, 6 | eqtri 2210 | . . . 4 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) |
8 | cnvco 4830 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
9 | 4, 7, 8 | 3eqtr4g 2247 | . . 3 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡(𝐴 ∘ 𝐵)) |
10 | 9 | cnveqd 4821 | . 2 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡◡(𝐴 ∘ 𝐵)) |
11 | relco 5145 | . . 3 ⊢ Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) | |
12 | dfrel2 5097 | . . 3 ⊢ (Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) ↔ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶))) | |
13 | 11, 12 | mpbi 145 | . 2 ⊢ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) |
14 | relco 5145 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
15 | dfrel2 5097 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) ↔ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
16 | 14, 15 | mpbi 145 | . 2 ⊢ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
17 | 10, 13, 16 | 3eqtr3g 2245 | 1 ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3144 ◡ccnv 4643 dom cdm 4644 ran crn 4645 ↾ cres 4646 ∘ ccom 4648 Rel wrel 4649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 |
This theorem is referenced by: cocnvres 5171 fcoi1 5415 |
Copyright terms: Public domain | W3C validator |