| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cores2 | GIF version | ||
| Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
| Ref | Expression |
|---|---|
| cores2 | ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 4892 | . . . . . 6 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 2 | 1 | sseq1i 3230 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐶 ↔ ran ◡𝐴 ⊆ 𝐶) |
| 3 | cores 5208 | . . . . 5 ⊢ (ran ◡𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) | |
| 4 | 2, 3 | sylbi 121 | . . . 4 ⊢ (dom 𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) |
| 5 | cnvco 4884 | . . . . 5 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
| 6 | cocnvcnv1 5215 | . . . . 5 ⊢ (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
| 7 | 5, 6 | eqtri 2230 | . . . 4 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) |
| 8 | cnvco 4884 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 9 | 4, 7, 8 | 3eqtr4g 2267 | . . 3 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡(𝐴 ∘ 𝐵)) |
| 10 | 9 | cnveqd 4875 | . 2 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡◡(𝐴 ∘ 𝐵)) |
| 11 | relco 5203 | . . 3 ⊢ Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) | |
| 12 | dfrel2 5155 | . . 3 ⊢ (Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) ↔ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶))) | |
| 13 | 11, 12 | mpbi 145 | . 2 ⊢ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) |
| 14 | relco 5203 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 15 | dfrel2 5155 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) ↔ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
| 16 | 14, 15 | mpbi 145 | . 2 ⊢ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| 17 | 10, 13, 16 | 3eqtr3g 2265 | 1 ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ⊆ wss 3177 ◡ccnv 4695 dom cdm 4696 ran crn 4697 ↾ cres 4698 ∘ ccom 4700 Rel wrel 4701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 |
| This theorem is referenced by: cocnvres 5229 fcoi1 5482 |
| Copyright terms: Public domain | W3C validator |