ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cores2 GIF version

Theorem cores2 5178
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
cores2 (dom 𝐴𝐶 → (𝐴(𝐵𝐶)) = (𝐴𝐵))

Proof of Theorem cores2
StepHypRef Expression
1 dfdm4 4854 . . . . . 6 dom 𝐴 = ran 𝐴
21sseq1i 3205 . . . . 5 (dom 𝐴𝐶 ↔ ran 𝐴𝐶)
3 cores 5169 . . . . 5 (ran 𝐴𝐶 → ((𝐵𝐶) ∘ 𝐴) = (𝐵𝐴))
42, 3sylbi 121 . . . 4 (dom 𝐴𝐶 → ((𝐵𝐶) ∘ 𝐴) = (𝐵𝐴))
5 cnvco 4847 . . . . 5 (𝐴(𝐵𝐶)) = ((𝐵𝐶) ∘ 𝐴)
6 cocnvcnv1 5176 . . . . 5 ((𝐵𝐶) ∘ 𝐴) = ((𝐵𝐶) ∘ 𝐴)
75, 6eqtri 2214 . . . 4 (𝐴(𝐵𝐶)) = ((𝐵𝐶) ∘ 𝐴)
8 cnvco 4847 . . . 4 (𝐴𝐵) = (𝐵𝐴)
94, 7, 83eqtr4g 2251 . . 3 (dom 𝐴𝐶(𝐴(𝐵𝐶)) = (𝐴𝐵))
109cnveqd 4838 . 2 (dom 𝐴𝐶(𝐴(𝐵𝐶)) = (𝐴𝐵))
11 relco 5164 . . 3 Rel (𝐴(𝐵𝐶))
12 dfrel2 5116 . . 3 (Rel (𝐴(𝐵𝐶)) ↔ (𝐴(𝐵𝐶)) = (𝐴(𝐵𝐶)))
1311, 12mpbi 145 . 2 (𝐴(𝐵𝐶)) = (𝐴(𝐵𝐶))
14 relco 5164 . . 3 Rel (𝐴𝐵)
15 dfrel2 5116 . . 3 (Rel (𝐴𝐵) ↔ (𝐴𝐵) = (𝐴𝐵))
1614, 15mpbi 145 . 2 (𝐴𝐵) = (𝐴𝐵)
1710, 13, 163eqtr3g 2249 1 (dom 𝐴𝐶 → (𝐴(𝐵𝐶)) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3153  ccnv 4658  dom cdm 4659  ran crn 4660  cres 4661  ccom 4663  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671
This theorem is referenced by:  cocnvres  5190  fcoi1  5434
  Copyright terms: Public domain W3C validator