ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem10 GIF version

Theorem 4sqlem10 12368
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem10.5 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
Assertion
Ref Expression
4sqlem10 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 276 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℕ)
32nnzd 9363 . . . 4 ((𝜑𝜓) → 𝑀 ∈ ℤ)
4 zsqcl 10576 . . . 4 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
53, 4syl 14 . . 3 ((𝜑𝜓) → (𝑀↑2) ∈ ℤ)
6 4sqlem5.2 . . . . . 6 (𝜑𝐴 ∈ ℤ)
76adantr 276 . . . . 5 ((𝜑𝜓) → 𝐴 ∈ ℤ)
82nnred 8921 . . . . . . . . 9 ((𝜑𝜓) → 𝑀 ∈ ℝ)
98rehalfcld 9154 . . . . . . . 8 ((𝜑𝜓) → (𝑀 / 2) ∈ ℝ)
109recnd 7976 . . . . . . 7 ((𝜑𝜓) → (𝑀 / 2) ∈ ℂ)
1110negnegd 8249 . . . . . 6 ((𝜑𝜓) → --(𝑀 / 2) = (𝑀 / 2))
12 4sqlem5.4 . . . . . . . . . . . . . . 15 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
136, 1, 124sqlem5 12363 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1413adantr 276 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1514simpld 112 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝐵 ∈ ℤ)
1615zred 9364 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵 ∈ ℝ)
176, 1, 124sqlem6 12364 . . . . . . . . . . . . 13 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1817adantr 276 . . . . . . . . . . . 12 ((𝜑𝜓) → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1918simprd 114 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵 < (𝑀 / 2))
2016, 19ltned 8061 . . . . . . . . . 10 ((𝜑𝜓) → 𝐵 ≠ (𝑀 / 2))
2120neneqd 2368 . . . . . . . . 9 ((𝜑𝜓) → ¬ 𝐵 = (𝑀 / 2))
22 2cnd 8981 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 2 ∈ ℂ)
2322sqvald 10636 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (2↑2) = (2 · 2))
2423oveq2d 5885 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2)))
252nncnd 8922 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑀 ∈ ℂ)
26 2ap0 9001 . . . . . . . . . . . . . . 15 2 # 0
2726a1i 9 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 2 # 0)
2825, 22, 27sqdivapd 10652 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2)))
2925sqcld 10637 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑀↑2) ∈ ℂ)
3029, 22, 22, 27, 27divdivap1d 8768 . . . . . . . . . . . . 13 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2)))
3124, 28, 303eqtr4d 2220 . . . . . . . . . . . 12 ((𝜑𝜓) → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2))
3229halfcld 9152 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ((𝑀↑2) / 2) ∈ ℂ)
3332halfcld 9152 . . . . . . . . . . . . 13 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) ∈ ℂ)
3415zcnd 9365 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐵 ∈ ℂ)
3534sqcld 10637 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝐵↑2) ∈ ℂ)
36 4sqlem10.5 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
3733, 35, 36subeq0d 8266 . . . . . . . . . . . 12 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = (𝐵↑2))
3831, 37eqtr2d 2211 . . . . . . . . . . 11 ((𝜑𝜓) → (𝐵↑2) = ((𝑀 / 2)↑2))
39 zq 9615 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
4015, 39syl 14 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝐵 ∈ ℚ)
41 2nn 9069 . . . . . . . . . . . . . 14 2 ∈ ℕ
4241a1i 9 . . . . . . . . . . . . 13 ((𝜑𝜓) → 2 ∈ ℕ)
43 znq 9613 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ)
443, 42, 43syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑀 / 2) ∈ ℚ)
45 qsqeqor 10616 . . . . . . . . . . . 12 ((𝐵 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4640, 44, 45syl2anc 411 . . . . . . . . . . 11 ((𝜑𝜓) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4738, 46mpbid 147 . . . . . . . . . 10 ((𝜑𝜓) → (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2)))
4847ord 724 . . . . . . . . 9 ((𝜑𝜓) → (¬ 𝐵 = (𝑀 / 2) → 𝐵 = -(𝑀 / 2)))
4921, 48mpd 13 . . . . . . . 8 ((𝜑𝜓) → 𝐵 = -(𝑀 / 2))
5049, 15eqeltrrd 2255 . . . . . . 7 ((𝜑𝜓) → -(𝑀 / 2) ∈ ℤ)
5150znegcld 9366 . . . . . 6 ((𝜑𝜓) → --(𝑀 / 2) ∈ ℤ)
5211, 51eqeltrrd 2255 . . . . 5 ((𝜑𝜓) → (𝑀 / 2) ∈ ℤ)
537, 52zaddcld 9368 . . . 4 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℤ)
54 zsqcl 10576 . . . 4 ((𝐴 + (𝑀 / 2)) ∈ ℤ → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
5553, 54syl 14 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
5653, 3zmulcld 9370 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · 𝑀) ∈ ℤ)
57 zq 9615 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
587, 57syl 14 . . . . . . . . 9 ((𝜑𝜓) → 𝐴 ∈ ℚ)
59 qaddcl 9624 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ)
6058, 44, 59syl2anc 411 . . . . . . . 8 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℚ)
61 nnq 9622 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
622, 61syl 14 . . . . . . . 8 ((𝜑𝜓) → 𝑀 ∈ ℚ)
632nngt0d 8952 . . . . . . . 8 ((𝜑𝜓) → 0 < 𝑀)
6460, 62, 63modqcld 10314 . . . . . . 7 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ)
65 qcn 9623 . . . . . . 7 (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
6664, 65syl 14 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
67 0cnd 7941 . . . . . 6 ((𝜑𝜓) → 0 ∈ ℂ)
68 df-neg 8121 . . . . . . 7 -(𝑀 / 2) = (0 − (𝑀 / 2))
6949, 12, 683eqtr3g 2233 . . . . . 6 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (0 − (𝑀 / 2)))
7066, 67, 10, 69subcan2d 8300 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0)
71 dvdsval3 11782 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
722, 53, 71syl2anc 411 . . . . 5 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
7370, 72mpbird 167 . . . 4 ((𝜑𝜓) → 𝑀 ∥ (𝐴 + (𝑀 / 2)))
74 dvdssq 12015 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
753, 53, 74syl2anc 411 . . . 4 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
7673, 75mpbid 147 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2))
7725sqvald 10636 . . . 4 ((𝜑𝜓) → (𝑀↑2) = (𝑀 · 𝑀))
782nnne0d 8953 . . . . . 6 ((𝜑𝜓) → 𝑀 ≠ 0)
79 dvdsmulcr 11812 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
803, 53, 3, 78, 79syl112anc 1242 . . . . 5 ((𝜑𝜓) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
8173, 80mpbird 167 . . . 4 ((𝜑𝜓) → (𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
8277, 81eqbrtrd 4022 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
835, 55, 56, 76, 82dvds2subd 11818 . 2 ((𝜑𝜓) → (𝑀↑2) ∥ (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
8453zcnd 9365 . . . . 5 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℂ)
8584sqvald 10636 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) = ((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))))
8685oveq1d 5884 . . 3 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
8784, 84, 25subdid 8361 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
88252halvesd 9153 . . . . . . 7 ((𝜑𝜓) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
8988oveq2d 5885 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − 𝑀))
907zcnd 9365 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
9190, 10, 10pnpcan2d 8296 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = (𝐴 − (𝑀 / 2)))
9289, 91eqtr3d 2212 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − 𝑀) = (𝐴 − (𝑀 / 2)))
9392oveq2d 5885 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
94 subsq 10612 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
9590, 10, 94syl2anc 411 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
9631oveq2d 5885 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
9793, 95, 963eqtr2d 2216 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
9886, 87, 973eqtr2d 2216 . 2 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
9983, 98breqtrd 4026 1 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4000  (class class class)co 5869  cc 7800  0cc0 7802   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118  -cneg 8119   # cap 8528   / cdiv 8618  cn 8908  2c2 8959  cz 9242  cq 9608   mod cmo 10308  cexp 10505  cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator