ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem10 GIF version

Theorem 4sqlem10 12385
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (๐œ‘ โ†’ ๐ด โˆˆ โ„ค)
4sqlem5.3 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„•)
4sqlem5.4 ๐ต = (((๐ด + (๐‘€ / 2)) mod ๐‘€) โˆ’ (๐‘€ / 2))
4sqlem10.5 ((๐œ‘ โˆง ๐œ“) โ†’ ((((๐‘€โ†‘2) / 2) / 2) โˆ’ (๐ตโ†‘2)) = 0)
Assertion
Ref Expression
4sqlem10 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€โ†‘2) โˆฅ ((๐ดโ†‘2) โˆ’ (((๐‘€โ†‘2) / 2) / 2)))

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.3 . . . . . 6 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„•)
21adantr 276 . . . . 5 ((๐œ‘ โˆง ๐œ“) โ†’ ๐‘€ โˆˆ โ„•)
32nnzd 9374 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ ๐‘€ โˆˆ โ„ค)
4 zsqcl 10591 . . . 4 (๐‘€ โˆˆ โ„ค โ†’ (๐‘€โ†‘2) โˆˆ โ„ค)
53, 4syl 14 . . 3 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€โ†‘2) โˆˆ โ„ค)
6 4sqlem5.2 . . . . . 6 (๐œ‘ โ†’ ๐ด โˆˆ โ„ค)
76adantr 276 . . . . 5 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ด โˆˆ โ„ค)
82nnred 8932 . . . . . . . . 9 ((๐œ‘ โˆง ๐œ“) โ†’ ๐‘€ โˆˆ โ„)
98rehalfcld 9165 . . . . . . . 8 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€ / 2) โˆˆ โ„)
109recnd 7986 . . . . . . 7 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€ / 2) โˆˆ โ„‚)
1110negnegd 8259 . . . . . 6 ((๐œ‘ โˆง ๐œ“) โ†’ --(๐‘€ / 2) = (๐‘€ / 2))
12 4sqlem5.4 . . . . . . . . . . . . . . 15 ๐ต = (((๐ด + (๐‘€ / 2)) mod ๐‘€) โˆ’ (๐‘€ / 2))
136, 1, 124sqlem5 12380 . . . . . . . . . . . . . 14 (๐œ‘ โ†’ (๐ต โˆˆ โ„ค โˆง ((๐ด โˆ’ ๐ต) / ๐‘€) โˆˆ โ„ค))
1413adantr 276 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐œ“) โ†’ (๐ต โˆˆ โ„ค โˆง ((๐ด โˆ’ ๐ต) / ๐‘€) โˆˆ โ„ค))
1514simpld 112 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ต โˆˆ โ„ค)
1615zred 9375 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ต โˆˆ โ„)
176, 1, 124sqlem6 12381 . . . . . . . . . . . . 13 (๐œ‘ โ†’ (-(๐‘€ / 2) โ‰ค ๐ต โˆง ๐ต < (๐‘€ / 2)))
1817adantr 276 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐œ“) โ†’ (-(๐‘€ / 2) โ‰ค ๐ต โˆง ๐ต < (๐‘€ / 2)))
1918simprd 114 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ต < (๐‘€ / 2))
2016, 19ltned 8071 . . . . . . . . . 10 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ต โ‰  (๐‘€ / 2))
2120neneqd 2368 . . . . . . . . 9 ((๐œ‘ โˆง ๐œ“) โ†’ ยฌ ๐ต = (๐‘€ / 2))
22 2cnd 8992 . . . . . . . . . . . . . . 15 ((๐œ‘ โˆง ๐œ“) โ†’ 2 โˆˆ โ„‚)
2322sqvald 10651 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐œ“) โ†’ (2โ†‘2) = (2 ยท 2))
2423oveq2d 5891 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐‘€โ†‘2) / (2โ†‘2)) = ((๐‘€โ†‘2) / (2 ยท 2)))
252nncnd 8933 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐œ“) โ†’ ๐‘€ โˆˆ โ„‚)
26 2ap0 9012 . . . . . . . . . . . . . . 15 2 # 0
2726a1i 9 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐œ“) โ†’ 2 # 0)
2825, 22, 27sqdivapd 10667 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐‘€ / 2)โ†‘2) = ((๐‘€โ†‘2) / (2โ†‘2)))
2925sqcld 10652 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€โ†‘2) โˆˆ โ„‚)
3029, 22, 22, 27, 27divdivap1d 8779 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐œ“) โ†’ (((๐‘€โ†‘2) / 2) / 2) = ((๐‘€โ†‘2) / (2 ยท 2)))
3124, 28, 303eqtr4d 2220 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐‘€ / 2)โ†‘2) = (((๐‘€โ†‘2) / 2) / 2))
3229halfcld 9163 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐‘€โ†‘2) / 2) โˆˆ โ„‚)
3332halfcld 9163 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐œ“) โ†’ (((๐‘€โ†‘2) / 2) / 2) โˆˆ โ„‚)
3415zcnd 9376 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ต โˆˆ โ„‚)
3534sqcld 10652 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐œ“) โ†’ (๐ตโ†‘2) โˆˆ โ„‚)
36 4sqlem10.5 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐œ“) โ†’ ((((๐‘€โ†‘2) / 2) / 2) โˆ’ (๐ตโ†‘2)) = 0)
3733, 35, 36subeq0d 8276 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐œ“) โ†’ (((๐‘€โ†‘2) / 2) / 2) = (๐ตโ†‘2))
3831, 37eqtr2d 2211 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐œ“) โ†’ (๐ตโ†‘2) = ((๐‘€ / 2)โ†‘2))
39 zq 9626 . . . . . . . . . . . . 13 (๐ต โˆˆ โ„ค โ†’ ๐ต โˆˆ โ„š)
4015, 39syl 14 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ต โˆˆ โ„š)
41 2nn 9080 . . . . . . . . . . . . . 14 2 โˆˆ โ„•
4241a1i 9 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐œ“) โ†’ 2 โˆˆ โ„•)
43 znq 9624 . . . . . . . . . . . . 13 ((๐‘€ โˆˆ โ„ค โˆง 2 โˆˆ โ„•) โ†’ (๐‘€ / 2) โˆˆ โ„š)
443, 42, 43syl2anc 411 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€ / 2) โˆˆ โ„š)
45 qsqeqor 10631 . . . . . . . . . . . 12 ((๐ต โˆˆ โ„š โˆง (๐‘€ / 2) โˆˆ โ„š) โ†’ ((๐ตโ†‘2) = ((๐‘€ / 2)โ†‘2) โ†” (๐ต = (๐‘€ / 2) โˆจ ๐ต = -(๐‘€ / 2))))
4640, 44, 45syl2anc 411 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ตโ†‘2) = ((๐‘€ / 2)โ†‘2) โ†” (๐ต = (๐‘€ / 2) โˆจ ๐ต = -(๐‘€ / 2))))
4738, 46mpbid 147 . . . . . . . . . 10 ((๐œ‘ โˆง ๐œ“) โ†’ (๐ต = (๐‘€ / 2) โˆจ ๐ต = -(๐‘€ / 2)))
4847ord 724 . . . . . . . . 9 ((๐œ‘ โˆง ๐œ“) โ†’ (ยฌ ๐ต = (๐‘€ / 2) โ†’ ๐ต = -(๐‘€ / 2)))
4921, 48mpd 13 . . . . . . . 8 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ต = -(๐‘€ / 2))
5049, 15eqeltrrd 2255 . . . . . . 7 ((๐œ‘ โˆง ๐œ“) โ†’ -(๐‘€ / 2) โˆˆ โ„ค)
5150znegcld 9377 . . . . . 6 ((๐œ‘ โˆง ๐œ“) โ†’ --(๐‘€ / 2) โˆˆ โ„ค)
5211, 51eqeltrrd 2255 . . . . 5 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€ / 2) โˆˆ โ„ค)
537, 52zaddcld 9379 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ (๐ด + (๐‘€ / 2)) โˆˆ โ„ค)
54 zsqcl 10591 . . . 4 ((๐ด + (๐‘€ / 2)) โˆˆ โ„ค โ†’ ((๐ด + (๐‘€ / 2))โ†‘2) โˆˆ โ„ค)
5553, 54syl 14 . . 3 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2))โ†‘2) โˆˆ โ„ค)
5653, 3zmulcld 9381 . . 3 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) ยท ๐‘€) โˆˆ โ„ค)
57 zq 9626 . . . . . . . . . 10 (๐ด โˆˆ โ„ค โ†’ ๐ด โˆˆ โ„š)
587, 57syl 14 . . . . . . . . 9 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ด โˆˆ โ„š)
59 qaddcl 9635 . . . . . . . . 9 ((๐ด โˆˆ โ„š โˆง (๐‘€ / 2) โˆˆ โ„š) โ†’ (๐ด + (๐‘€ / 2)) โˆˆ โ„š)
6058, 44, 59syl2anc 411 . . . . . . . 8 ((๐œ‘ โˆง ๐œ“) โ†’ (๐ด + (๐‘€ / 2)) โˆˆ โ„š)
61 nnq 9633 . . . . . . . . 9 (๐‘€ โˆˆ โ„• โ†’ ๐‘€ โˆˆ โ„š)
622, 61syl 14 . . . . . . . 8 ((๐œ‘ โˆง ๐œ“) โ†’ ๐‘€ โˆˆ โ„š)
632nngt0d 8963 . . . . . . . 8 ((๐œ‘ โˆง ๐œ“) โ†’ 0 < ๐‘€)
6460, 62, 63modqcld 10328 . . . . . . 7 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) mod ๐‘€) โˆˆ โ„š)
65 qcn 9634 . . . . . . 7 (((๐ด + (๐‘€ / 2)) mod ๐‘€) โˆˆ โ„š โ†’ ((๐ด + (๐‘€ / 2)) mod ๐‘€) โˆˆ โ„‚)
6664, 65syl 14 . . . . . 6 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) mod ๐‘€) โˆˆ โ„‚)
67 0cnd 7950 . . . . . 6 ((๐œ‘ โˆง ๐œ“) โ†’ 0 โˆˆ โ„‚)
68 df-neg 8131 . . . . . . 7 -(๐‘€ / 2) = (0 โˆ’ (๐‘€ / 2))
6949, 12, 683eqtr3g 2233 . . . . . 6 ((๐œ‘ โˆง ๐œ“) โ†’ (((๐ด + (๐‘€ / 2)) mod ๐‘€) โˆ’ (๐‘€ / 2)) = (0 โˆ’ (๐‘€ / 2)))
7066, 67, 10, 69subcan2d 8310 . . . . 5 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) mod ๐‘€) = 0)
71 dvdsval3 11798 . . . . . 6 ((๐‘€ โˆˆ โ„• โˆง (๐ด + (๐‘€ / 2)) โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ (๐ด + (๐‘€ / 2)) โ†” ((๐ด + (๐‘€ / 2)) mod ๐‘€) = 0))
722, 53, 71syl2anc 411 . . . . 5 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€ โˆฅ (๐ด + (๐‘€ / 2)) โ†” ((๐ด + (๐‘€ / 2)) mod ๐‘€) = 0))
7370, 72mpbird 167 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ ๐‘€ โˆฅ (๐ด + (๐‘€ / 2)))
74 dvdssq 12032 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง (๐ด + (๐‘€ / 2)) โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ (๐ด + (๐‘€ / 2)) โ†” (๐‘€โ†‘2) โˆฅ ((๐ด + (๐‘€ / 2))โ†‘2)))
753, 53, 74syl2anc 411 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€ โˆฅ (๐ด + (๐‘€ / 2)) โ†” (๐‘€โ†‘2) โˆฅ ((๐ด + (๐‘€ / 2))โ†‘2)))
7673, 75mpbid 147 . . 3 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€โ†‘2) โˆฅ ((๐ด + (๐‘€ / 2))โ†‘2))
7725sqvald 10651 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€โ†‘2) = (๐‘€ ยท ๐‘€))
782nnne0d 8964 . . . . . 6 ((๐œ‘ โˆง ๐œ“) โ†’ ๐‘€ โ‰  0)
79 dvdsmulcr 11828 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง (๐ด + (๐‘€ / 2)) โˆˆ โ„ค โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘€ โ‰  0)) โ†’ ((๐‘€ ยท ๐‘€) โˆฅ ((๐ด + (๐‘€ / 2)) ยท ๐‘€) โ†” ๐‘€ โˆฅ (๐ด + (๐‘€ / 2))))
803, 53, 3, 78, 79syl112anc 1242 . . . . 5 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐‘€ ยท ๐‘€) โˆฅ ((๐ด + (๐‘€ / 2)) ยท ๐‘€) โ†” ๐‘€ โˆฅ (๐ด + (๐‘€ / 2))))
8173, 80mpbird 167 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€ ยท ๐‘€) โˆฅ ((๐ด + (๐‘€ / 2)) ยท ๐‘€))
8277, 81eqbrtrd 4026 . . 3 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€โ†‘2) โˆฅ ((๐ด + (๐‘€ / 2)) ยท ๐‘€))
835, 55, 56, 76, 82dvds2subd 11834 . 2 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€โ†‘2) โˆฅ (((๐ด + (๐‘€ / 2))โ†‘2) โˆ’ ((๐ด + (๐‘€ / 2)) ยท ๐‘€)))
8453zcnd 9376 . . . . 5 ((๐œ‘ โˆง ๐œ“) โ†’ (๐ด + (๐‘€ / 2)) โˆˆ โ„‚)
8584sqvald 10651 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2))โ†‘2) = ((๐ด + (๐‘€ / 2)) ยท (๐ด + (๐‘€ / 2))))
8685oveq1d 5890 . . 3 ((๐œ‘ โˆง ๐œ“) โ†’ (((๐ด + (๐‘€ / 2))โ†‘2) โˆ’ ((๐ด + (๐‘€ / 2)) ยท ๐‘€)) = (((๐ด + (๐‘€ / 2)) ยท (๐ด + (๐‘€ / 2))) โˆ’ ((๐ด + (๐‘€ / 2)) ยท ๐‘€)))
8784, 84, 25subdid 8371 . . 3 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) ยท ((๐ด + (๐‘€ / 2)) โˆ’ ๐‘€)) = (((๐ด + (๐‘€ / 2)) ยท (๐ด + (๐‘€ / 2))) โˆ’ ((๐ด + (๐‘€ / 2)) ยท ๐‘€)))
88252halvesd 9164 . . . . . . 7 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐‘€ / 2) + (๐‘€ / 2)) = ๐‘€)
8988oveq2d 5891 . . . . . 6 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) โˆ’ ((๐‘€ / 2) + (๐‘€ / 2))) = ((๐ด + (๐‘€ / 2)) โˆ’ ๐‘€))
907zcnd 9376 . . . . . . 7 ((๐œ‘ โˆง ๐œ“) โ†’ ๐ด โˆˆ โ„‚)
9190, 10, 10pnpcan2d 8306 . . . . . 6 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) โˆ’ ((๐‘€ / 2) + (๐‘€ / 2))) = (๐ด โˆ’ (๐‘€ / 2)))
9289, 91eqtr3d 2212 . . . . 5 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) โˆ’ ๐‘€) = (๐ด โˆ’ (๐‘€ / 2)))
9392oveq2d 5891 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) ยท ((๐ด + (๐‘€ / 2)) โˆ’ ๐‘€)) = ((๐ด + (๐‘€ / 2)) ยท (๐ด โˆ’ (๐‘€ / 2))))
94 subsq 10627 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง (๐‘€ / 2) โˆˆ โ„‚) โ†’ ((๐ดโ†‘2) โˆ’ ((๐‘€ / 2)โ†‘2)) = ((๐ด + (๐‘€ / 2)) ยท (๐ด โˆ’ (๐‘€ / 2))))
9590, 10, 94syl2anc 411 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ดโ†‘2) โˆ’ ((๐‘€ / 2)โ†‘2)) = ((๐ด + (๐‘€ / 2)) ยท (๐ด โˆ’ (๐‘€ / 2))))
9631oveq2d 5891 . . . 4 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ดโ†‘2) โˆ’ ((๐‘€ / 2)โ†‘2)) = ((๐ดโ†‘2) โˆ’ (((๐‘€โ†‘2) / 2) / 2)))
9793, 95, 963eqtr2d 2216 . . 3 ((๐œ‘ โˆง ๐œ“) โ†’ ((๐ด + (๐‘€ / 2)) ยท ((๐ด + (๐‘€ / 2)) โˆ’ ๐‘€)) = ((๐ดโ†‘2) โˆ’ (((๐‘€โ†‘2) / 2) / 2)))
9886, 87, 973eqtr2d 2216 . 2 ((๐œ‘ โˆง ๐œ“) โ†’ (((๐ด + (๐‘€ / 2))โ†‘2) โˆ’ ((๐ด + (๐‘€ / 2)) ยท ๐‘€)) = ((๐ดโ†‘2) โˆ’ (((๐‘€โ†‘2) / 2) / 2)))
9983, 98breqtrd 4030 1 ((๐œ‘ โˆง ๐œ“) โ†’ (๐‘€โ†‘2) โˆฅ ((๐ดโ†‘2) โˆ’ (((๐‘€โ†‘2) / 2) / 2)))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆจ wo 708   = wceq 1353   โˆˆ wcel 2148   โ‰  wne 2347   class class class wbr 4004  (class class class)co 5875  โ„‚cc 7809  0cc0 7811   + caddc 7814   ยท cmul 7816   < clt 7992   โ‰ค cle 7993   โˆ’ cmin 8128  -cneg 8129   # cap 8538   / cdiv 8629  โ„•cn 8919  2c2 8970  โ„คcz 9253  โ„šcq 9619   mod cmo 10322  โ†‘cexp 10519   โˆฅ cdvds 11794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-sup 6983  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-dvds 11795  df-gcd 11944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator