| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvmptccn | GIF version | ||
| Description: Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.) |
| Ref | Expression |
|---|---|
| dvmptccn.2 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| dvmptccn | ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptccn.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | dvconst 15281 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
| 4 | fconstmpt 4740 | . . 3 ⊢ (ℂ × {𝐴}) = (𝑥 ∈ ℂ ↦ 𝐴) | |
| 5 | 4 | oveq2i 5978 | . 2 ⊢ (ℂ D (ℂ × {𝐴})) = (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) |
| 6 | fconstmpt 4740 | . 2 ⊢ (ℂ × {0}) = (𝑥 ∈ ℂ ↦ 0) | |
| 7 | 3, 5, 6 | 3eqtr3g 2263 | 1 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 {csn 3643 ↦ cmpt 4121 × cxp 4691 (class class class)co 5967 ℂcc 7958 0cc0 7960 D cdv 15242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-pm 6761 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-cncf 15158 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: dvmptcmulcn 15308 dvef 15314 |
| Copyright terms: Public domain | W3C validator |