ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsff1o GIF version

Theorem xpsff1o 12932
Description: The function appearing in xpsval 12935 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsff1o 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑘)

Proof of Theorem xpsff1o
Dummy variables 𝑎 𝑏 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsfrnel2 12929 . . . . . 6 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑥𝐴𝑦𝐵))
21biimpri 133 . . . . 5 ((𝑥𝐴𝑦𝐵) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
32rgen2 2580 . . . 4 𝑥𝐴𝑦𝐵 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
4 xpsff1o.f . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
54fmpo 6254 . . . 4 (∀𝑥𝐴𝑦𝐵 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
63, 5mpbi 145 . . 3 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
7 1st2nd2 6228 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
87fveq2d 5558 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
9 df-ov 5921 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
10 xp1st 6218 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
11 xp2nd 6219 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
124xpsfval 12931 . . . . . . . . 9 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
1310, 11, 12syl2anc 411 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
149, 13eqtr3id 2240 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
158, 14eqtrd 2226 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
16 1st2nd2 6228 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
1716fveq2d 5558 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩))
18 df-ov 5921 . . . . . . . 8 ((1st𝑤)𝐹(2nd𝑤)) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩)
19 xp1st 6218 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (1st𝑤) ∈ 𝐴)
20 xp2nd 6219 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (2nd𝑤) ∈ 𝐵)
214xpsfval 12931 . . . . . . . . 9 (((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2219, 20, 21syl2anc 411 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2318, 22eqtr3id 2240 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2417, 23eqtrd 2226 . . . . . 6 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2515, 24eqeqan12d 2209 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) ↔ {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}))
26 fveq1 5553 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅))
27 1stexg 6220 . . . . . . . . . 10 (𝑧 ∈ V → (1st𝑧) ∈ V)
2827elv 2764 . . . . . . . . 9 (1st𝑧) ∈ V
29 fvpr0o 12924 . . . . . . . . 9 ((1st𝑧) ∈ V → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = (1st𝑧))
3028, 29ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = (1st𝑧)
31 1stexg 6220 . . . . . . . . . 10 (𝑤 ∈ V → (1st𝑤) ∈ V)
3231elv 2764 . . . . . . . . 9 (1st𝑤) ∈ V
33 fvpr0o 12924 . . . . . . . . 9 ((1st𝑤) ∈ V → ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅) = (1st𝑤))
3432, 33ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅) = (1st𝑤)
3526, 30, 343eqtr3g 2249 . . . . . . 7 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → (1st𝑧) = (1st𝑤))
36 fveq1 5553 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o))
37 2ndexg 6221 . . . . . . . . . 10 (𝑧 ∈ V → (2nd𝑧) ∈ V)
3837elv 2764 . . . . . . . . 9 (2nd𝑧) ∈ V
39 fvpr1o 12925 . . . . . . . . 9 ((2nd𝑧) ∈ V → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = (2nd𝑧))
4038, 39ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = (2nd𝑧)
41 2ndexg 6221 . . . . . . . . . 10 (𝑤 ∈ V → (2nd𝑤) ∈ V)
4241elv 2764 . . . . . . . . 9 (2nd𝑤) ∈ V
43 fvpr1o 12925 . . . . . . . . 9 ((2nd𝑤) ∈ V → ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o) = (2nd𝑤))
4442, 43ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o) = (2nd𝑤)
4536, 40, 443eqtr3g 2249 . . . . . . 7 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → (2nd𝑧) = (2nd𝑤))
4635, 45opeq12d 3812 . . . . . 6 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩)
477, 16eqeqan12d 2209 . . . . . 6 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
4846, 47imbitrrid 156 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → 𝑧 = 𝑤))
4925, 48sylbid 150 . . . 4 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
5049rgen2 2580 . . 3 𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
51 dff13 5811 . . 3 (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
526, 50, 51mpbir2an 944 . 2 𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
53 xpsfrnel 12927 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑧 Fn 2o ∧ (𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵))
5453simp2bi 1015 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘∅) ∈ 𝐴)
5553simp3bi 1016 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘1o) ∈ 𝐵)
564xpsfval 12931 . . . . . . 7 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩})
5754, 55, 56syl2anc 411 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩})
58 ixpfn 6758 . . . . . . 7 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 Fn 2o)
59 xpsfeq 12928 . . . . . . 7 (𝑧 Fn 2o → {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩} = 𝑧)
6058, 59syl 14 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩} = 𝑧)
6157, 60eqtr2d 2227 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o)))
62 rspceov 5960 . . . . 5 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o))) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
6354, 55, 61, 62syl3anc 1249 . . . 4 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
6463rgen 2547 . . 3 𝑧X 𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)
65 foov 6065 . . 3 (𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧X 𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)))
666, 64, 65mpbir2an 944 . 2 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
67 df-f1o 5261 . 2 (𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)))
6852, 66, 67mpbir2an 944 1 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  c0 3446  ifcif 3557  {cpr 3619  cop 3621   × cxp 4657   Fn wfn 5249  wf 5250  1-1wf1 5251  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  cmpo 5920  1st c1st 6191  2nd c2nd 6192  1oc1o 6462  2oc2o 6463  Xcixp 6752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-1o 6469  df-2o 6470  df-er 6587  df-ixp 6753  df-en 6795  df-fin 6797
This theorem is referenced by:  xpsfrn  12933  xpsff1o2  12934
  Copyright terms: Public domain W3C validator