| Step | Hyp | Ref
| Expression |
| 1 | | xpsfrnel2 12989 |
. . . . . 6
⊢
({〈∅, 𝑥〉, 〈1o, 𝑦〉} ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 2 | 1 | biimpri 133 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {〈∅, 𝑥〉, 〈1o, 𝑦〉} ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵)) |
| 3 | 2 | rgen2 2583 |
. . . 4
⊢
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 {〈∅, 𝑥〉, 〈1o, 𝑦〉} ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) |
| 4 | | xpsff1o.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| 5 | 4 | fmpo 6259 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 {〈∅, 𝑥〉, 〈1o, 𝑦〉} ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)) |
| 6 | 3, 5 | mpbi 145 |
. . 3
⊢ 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) |
| 7 | | 1st2nd2 6233 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝐴 × 𝐵) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 8 | 7 | fveq2d 5562 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 × 𝐵) → (𝐹‘𝑧) = (𝐹‘〈(1st ‘𝑧), (2nd ‘𝑧)〉)) |
| 9 | | df-ov 5925 |
. . . . . . . 8
⊢
((1st ‘𝑧)𝐹(2nd ‘𝑧)) = (𝐹‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 10 | | xp1st 6223 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝐴 × 𝐵) → (1st ‘𝑧) ∈ 𝐴) |
| 11 | | xp2nd 6224 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝐴 × 𝐵) → (2nd ‘𝑧) ∈ 𝐵) |
| 12 | 4 | xpsfval 12991 |
. . . . . . . . 9
⊢
(((1st ‘𝑧) ∈ 𝐴 ∧ (2nd ‘𝑧) ∈ 𝐵) → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) = {〈∅, (1st
‘𝑧)〉,
〈1o, (2nd ‘𝑧)〉}) |
| 13 | 10, 11, 12 | syl2anc 411 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝐴 × 𝐵) → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) = {〈∅, (1st
‘𝑧)〉,
〈1o, (2nd ‘𝑧)〉}) |
| 14 | 9, 13 | eqtr3id 2243 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 × 𝐵) → (𝐹‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) = {〈∅,
(1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉}) |
| 15 | 8, 14 | eqtrd 2229 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 × 𝐵) → (𝐹‘𝑧) = {〈∅, (1st
‘𝑧)〉,
〈1o, (2nd ‘𝑧)〉}) |
| 16 | | 1st2nd2 6233 |
. . . . . . . 8
⊢ (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 17 | 16 | fveq2d 5562 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐴 × 𝐵) → (𝐹‘𝑤) = (𝐹‘〈(1st ‘𝑤), (2nd ‘𝑤)〉)) |
| 18 | | df-ov 5925 |
. . . . . . . 8
⊢
((1st ‘𝑤)𝐹(2nd ‘𝑤)) = (𝐹‘〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 19 | | xp1st 6223 |
. . . . . . . . 9
⊢ (𝑤 ∈ (𝐴 × 𝐵) → (1st ‘𝑤) ∈ 𝐴) |
| 20 | | xp2nd 6224 |
. . . . . . . . 9
⊢ (𝑤 ∈ (𝐴 × 𝐵) → (2nd ‘𝑤) ∈ 𝐵) |
| 21 | 4 | xpsfval 12991 |
. . . . . . . . 9
⊢
(((1st ‘𝑤) ∈ 𝐴 ∧ (2nd ‘𝑤) ∈ 𝐵) → ((1st ‘𝑤)𝐹(2nd ‘𝑤)) = {〈∅, (1st
‘𝑤)〉,
〈1o, (2nd ‘𝑤)〉}) |
| 22 | 19, 20, 21 | syl2anc 411 |
. . . . . . . 8
⊢ (𝑤 ∈ (𝐴 × 𝐵) → ((1st ‘𝑤)𝐹(2nd ‘𝑤)) = {〈∅, (1st
‘𝑤)〉,
〈1o, (2nd ‘𝑤)〉}) |
| 23 | 18, 22 | eqtr3id 2243 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐴 × 𝐵) → (𝐹‘〈(1st ‘𝑤), (2nd ‘𝑤)〉) = {〈∅,
(1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉}) |
| 24 | 17, 23 | eqtrd 2229 |
. . . . . 6
⊢ (𝑤 ∈ (𝐴 × 𝐵) → (𝐹‘𝑤) = {〈∅, (1st
‘𝑤)〉,
〈1o, (2nd ‘𝑤)〉}) |
| 25 | 15, 24 | eqeqan12d 2212 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ {〈∅, (1st
‘𝑧)〉,
〈1o, (2nd ‘𝑧)〉} = {〈∅, (1st
‘𝑤)〉,
〈1o, (2nd ‘𝑤)〉})) |
| 26 | | fveq1 5557 |
. . . . . . . 8
⊢
({〈∅, (1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉} =
{〈∅, (1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉} →
({〈∅, (1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉}‘∅) = ({〈∅,
(1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉}‘∅)) |
| 27 | | 1stexg 6225 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V → (1st
‘𝑧) ∈
V) |
| 28 | 27 | elv 2767 |
. . . . . . . . 9
⊢
(1st ‘𝑧) ∈ V |
| 29 | | fvpr0o 12984 |
. . . . . . . . 9
⊢
((1st ‘𝑧) ∈ V → ({〈∅,
(1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉}‘∅) = (1st
‘𝑧)) |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . 8
⊢
({〈∅, (1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉}‘∅) = (1st
‘𝑧) |
| 31 | | 1stexg 6225 |
. . . . . . . . . 10
⊢ (𝑤 ∈ V → (1st
‘𝑤) ∈
V) |
| 32 | 31 | elv 2767 |
. . . . . . . . 9
⊢
(1st ‘𝑤) ∈ V |
| 33 | | fvpr0o 12984 |
. . . . . . . . 9
⊢
((1st ‘𝑤) ∈ V → ({〈∅,
(1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉}‘∅) = (1st
‘𝑤)) |
| 34 | 32, 33 | ax-mp 5 |
. . . . . . . 8
⊢
({〈∅, (1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉}‘∅) = (1st
‘𝑤) |
| 35 | 26, 30, 34 | 3eqtr3g 2252 |
. . . . . . 7
⊢
({〈∅, (1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉} =
{〈∅, (1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉} →
(1st ‘𝑧) =
(1st ‘𝑤)) |
| 36 | | fveq1 5557 |
. . . . . . . 8
⊢
({〈∅, (1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉} =
{〈∅, (1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉} →
({〈∅, (1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉}‘1o) =
({〈∅, (1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉}‘1o)) |
| 37 | | 2ndexg 6226 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V → (2nd
‘𝑧) ∈
V) |
| 38 | 37 | elv 2767 |
. . . . . . . . 9
⊢
(2nd ‘𝑧) ∈ V |
| 39 | | fvpr1o 12985 |
. . . . . . . . 9
⊢
((2nd ‘𝑧) ∈ V → ({〈∅,
(1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉}‘1o) =
(2nd ‘𝑧)) |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
⊢
({〈∅, (1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉}‘1o) =
(2nd ‘𝑧) |
| 41 | | 2ndexg 6226 |
. . . . . . . . . 10
⊢ (𝑤 ∈ V → (2nd
‘𝑤) ∈
V) |
| 42 | 41 | elv 2767 |
. . . . . . . . 9
⊢
(2nd ‘𝑤) ∈ V |
| 43 | | fvpr1o 12985 |
. . . . . . . . 9
⊢
((2nd ‘𝑤) ∈ V → ({〈∅,
(1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉}‘1o) =
(2nd ‘𝑤)) |
| 44 | 42, 43 | ax-mp 5 |
. . . . . . . 8
⊢
({〈∅, (1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉}‘1o) =
(2nd ‘𝑤) |
| 45 | 36, 40, 44 | 3eqtr3g 2252 |
. . . . . . 7
⊢
({〈∅, (1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉} =
{〈∅, (1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉} →
(2nd ‘𝑧) =
(2nd ‘𝑤)) |
| 46 | 35, 45 | opeq12d 3816 |
. . . . . 6
⊢
({〈∅, (1st ‘𝑧)〉, 〈1o, (2nd
‘𝑧)〉} =
{〈∅, (1st ‘𝑤)〉, 〈1o, (2nd
‘𝑤)〉} →
〈(1st ‘𝑧), (2nd ‘𝑧)〉 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
| 47 | 7, 16 | eqeqan12d 2212 |
. . . . . 6
⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → (𝑧 = 𝑤 ↔ 〈(1st ‘𝑧), (2nd ‘𝑧)〉 = 〈(1st
‘𝑤), (2nd
‘𝑤)〉)) |
| 48 | 46, 47 | imbitrrid 156 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ({〈∅, (1st
‘𝑧)〉,
〈1o, (2nd ‘𝑧)〉} = {〈∅, (1st
‘𝑤)〉,
〈1o, (2nd ‘𝑤)〉} → 𝑧 = 𝑤)) |
| 49 | 25, 48 | sylbid 150 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
| 50 | 49 | rgen2 2583 |
. . 3
⊢
∀𝑧 ∈
(𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) |
| 51 | | dff13 5815 |
. . 3
⊢ (𝐹:(𝐴 × 𝐵)–1-1→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
| 52 | 6, 50, 51 | mpbir2an 944 |
. 2
⊢ 𝐹:(𝐴 × 𝐵)–1-1→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) |
| 53 | | xpsfrnel 12987 |
. . . . . 6
⊢ (𝑧 ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) ↔ (𝑧 Fn 2o ∧ (𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵)) |
| 54 | 53 | simp2bi 1015 |
. . . . 5
⊢ (𝑧 ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) → (𝑧‘∅) ∈ 𝐴) |
| 55 | 53 | simp3bi 1016 |
. . . . 5
⊢ (𝑧 ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) → (𝑧‘1o) ∈ 𝐵) |
| 56 | 4 | xpsfval 12991 |
. . . . . . 7
⊢ (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {〈∅,
(𝑧‘∅)〉,
〈1o, (𝑧‘1o)〉}) |
| 57 | 54, 55, 56 | syl2anc 411 |
. . . . . 6
⊢ (𝑧 ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {〈∅,
(𝑧‘∅)〉,
〈1o, (𝑧‘1o)〉}) |
| 58 | | ixpfn 6763 |
. . . . . . 7
⊢ (𝑧 ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) → 𝑧 Fn 2o) |
| 59 | | xpsfeq 12988 |
. . . . . . 7
⊢ (𝑧 Fn 2o →
{〈∅, (𝑧‘∅)〉, 〈1o,
(𝑧‘1o)〉} = 𝑧) |
| 60 | 58, 59 | syl 14 |
. . . . . 6
⊢ (𝑧 ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) → {〈∅, (𝑧‘∅)〉,
〈1o, (𝑧‘1o)〉} = 𝑧) |
| 61 | 57, 60 | eqtr2d 2230 |
. . . . 5
⊢ (𝑧 ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) → 𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o))) |
| 62 | | rspceov 5964 |
. . . . 5
⊢ (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵 ∧ 𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o))) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎𝐹𝑏)) |
| 63 | 54, 55, 61, 62 | syl3anc 1249 |
. . . 4
⊢ (𝑧 ∈ X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) → ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎𝐹𝑏)) |
| 64 | 63 | rgen 2550 |
. . 3
⊢
∀𝑧 ∈
X 𝑘
∈ 2o if(𝑘 =
∅, 𝐴, 𝐵)∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎𝐹𝑏) |
| 65 | | foov 6070 |
. . 3
⊢ (𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧 ∈ X 𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎𝐹𝑏))) |
| 66 | 6, 64, 65 | mpbir2an 944 |
. 2
⊢ 𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) |
| 67 | | df-f1o 5265 |
. 2
⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)–1-1→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ 𝐹:(𝐴 × 𝐵)–onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))) |
| 68 | 52, 66, 67 | mpbir2an 944 |
1
⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈
2o if(𝑘 =
∅, 𝐴, 𝐵) |