ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsff1o GIF version

Theorem xpsff1o 12775
Description: The function appearing in xpsval 12778 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsff1o 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑘)

Proof of Theorem xpsff1o
Dummy variables 𝑎 𝑏 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsfrnel2 12772 . . . . . 6 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑥𝐴𝑦𝐵))
21biimpri 133 . . . . 5 ((𝑥𝐴𝑦𝐵) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
32rgen2 2563 . . . 4 𝑥𝐴𝑦𝐵 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
4 xpsff1o.f . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
54fmpo 6205 . . . 4 (∀𝑥𝐴𝑦𝐵 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
63, 5mpbi 145 . . 3 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
7 1st2nd2 6179 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
87fveq2d 5521 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
9 df-ov 5881 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
10 xp1st 6169 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
11 xp2nd 6170 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
124xpsfval 12774 . . . . . . . . 9 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
1310, 11, 12syl2anc 411 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
149, 13eqtr3id 2224 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
158, 14eqtrd 2210 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
16 1st2nd2 6179 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
1716fveq2d 5521 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩))
18 df-ov 5881 . . . . . . . 8 ((1st𝑤)𝐹(2nd𝑤)) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩)
19 xp1st 6169 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (1st𝑤) ∈ 𝐴)
20 xp2nd 6170 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (2nd𝑤) ∈ 𝐵)
214xpsfval 12774 . . . . . . . . 9 (((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2219, 20, 21syl2anc 411 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2318, 22eqtr3id 2224 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2417, 23eqtrd 2210 . . . . . 6 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2515, 24eqeqan12d 2193 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) ↔ {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}))
26 fveq1 5516 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅))
27 1stexg 6171 . . . . . . . . . 10 (𝑧 ∈ V → (1st𝑧) ∈ V)
2827elv 2743 . . . . . . . . 9 (1st𝑧) ∈ V
29 fvpr0o 12767 . . . . . . . . 9 ((1st𝑧) ∈ V → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = (1st𝑧))
3028, 29ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = (1st𝑧)
31 1stexg 6171 . . . . . . . . . 10 (𝑤 ∈ V → (1st𝑤) ∈ V)
3231elv 2743 . . . . . . . . 9 (1st𝑤) ∈ V
33 fvpr0o 12767 . . . . . . . . 9 ((1st𝑤) ∈ V → ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅) = (1st𝑤))
3432, 33ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅) = (1st𝑤)
3526, 30, 343eqtr3g 2233 . . . . . . 7 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → (1st𝑧) = (1st𝑤))
36 fveq1 5516 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o))
37 2ndexg 6172 . . . . . . . . . 10 (𝑧 ∈ V → (2nd𝑧) ∈ V)
3837elv 2743 . . . . . . . . 9 (2nd𝑧) ∈ V
39 fvpr1o 12768 . . . . . . . . 9 ((2nd𝑧) ∈ V → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = (2nd𝑧))
4038, 39ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = (2nd𝑧)
41 2ndexg 6172 . . . . . . . . . 10 (𝑤 ∈ V → (2nd𝑤) ∈ V)
4241elv 2743 . . . . . . . . 9 (2nd𝑤) ∈ V
43 fvpr1o 12768 . . . . . . . . 9 ((2nd𝑤) ∈ V → ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o) = (2nd𝑤))
4442, 43ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o) = (2nd𝑤)
4536, 40, 443eqtr3g 2233 . . . . . . 7 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → (2nd𝑧) = (2nd𝑤))
4635, 45opeq12d 3788 . . . . . 6 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩)
477, 16eqeqan12d 2193 . . . . . 6 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
4846, 47imbitrrid 156 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → 𝑧 = 𝑤))
4925, 48sylbid 150 . . . 4 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
5049rgen2 2563 . . 3 𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
51 dff13 5772 . . 3 (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
526, 50, 51mpbir2an 942 . 2 𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
53 xpsfrnel 12770 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑧 Fn 2o ∧ (𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵))
5453simp2bi 1013 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘∅) ∈ 𝐴)
5553simp3bi 1014 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘1o) ∈ 𝐵)
564xpsfval 12774 . . . . . . 7 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩})
5754, 55, 56syl2anc 411 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩})
58 ixpfn 6707 . . . . . . 7 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 Fn 2o)
59 xpsfeq 12771 . . . . . . 7 (𝑧 Fn 2o → {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩} = 𝑧)
6058, 59syl 14 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩} = 𝑧)
6157, 60eqtr2d 2211 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o)))
62 rspceov 5920 . . . . 5 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o))) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
6354, 55, 61, 62syl3anc 1238 . . . 4 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
6463rgen 2530 . . 3 𝑧X 𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)
65 foov 6024 . . 3 (𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧X 𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)))
666, 64, 65mpbir2an 942 . 2 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
67 df-f1o 5225 . 2 (𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)))
6852, 66, 67mpbir2an 942 1 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wrex 2456  Vcvv 2739  c0 3424  ifcif 3536  {cpr 3595  cop 3597   × cxp 4626   Fn wfn 5213  wf 5214  1-1wf1 5215  ontowfo 5216  1-1-ontowf1o 5217  cfv 5218  (class class class)co 5878  cmpo 5880  1st c1st 6142  2nd c2nd 6143  1oc1o 6413  2oc2o 6414  Xcixp 6701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-1o 6420  df-2o 6421  df-er 6538  df-ixp 6702  df-en 6744  df-fin 6746
This theorem is referenced by:  xpsfrn  12776  xpsff1o2  12777
  Copyright terms: Public domain W3C validator