ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsff1o GIF version

Theorem xpsff1o 13251
Description: The function appearing in xpsval 13254 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsff1o 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑘)

Proof of Theorem xpsff1o
Dummy variables 𝑎 𝑏 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsfrnel2 13248 . . . . . 6 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑥𝐴𝑦𝐵))
21biimpri 133 . . . . 5 ((𝑥𝐴𝑦𝐵) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
32rgen2 2593 . . . 4 𝑥𝐴𝑦𝐵 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
4 xpsff1o.f . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
54fmpo 6299 . . . 4 (∀𝑥𝐴𝑦𝐵 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
63, 5mpbi 145 . . 3 𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
7 1st2nd2 6273 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
87fveq2d 5592 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
9 df-ov 5959 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
10 xp1st 6263 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
11 xp2nd 6264 . . . . . . . . 9 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
124xpsfval 13250 . . . . . . . . 9 (((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
1310, 11, 12syl2anc 411 . . . . . . . 8 (𝑧 ∈ (𝐴 × 𝐵) → ((1st𝑧)𝐹(2nd𝑧)) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
149, 13eqtr3id 2253 . . . . . . 7 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
158, 14eqtrd 2239 . . . . . 6 (𝑧 ∈ (𝐴 × 𝐵) → (𝐹𝑧) = {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩})
16 1st2nd2 6273 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
1716fveq2d 5592 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩))
18 df-ov 5959 . . . . . . . 8 ((1st𝑤)𝐹(2nd𝑤)) = (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩)
19 xp1st 6263 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (1st𝑤) ∈ 𝐴)
20 xp2nd 6264 . . . . . . . . 9 (𝑤 ∈ (𝐴 × 𝐵) → (2nd𝑤) ∈ 𝐵)
214xpsfval 13250 . . . . . . . . 9 (((1st𝑤) ∈ 𝐴 ∧ (2nd𝑤) ∈ 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2219, 20, 21syl2anc 411 . . . . . . . 8 (𝑤 ∈ (𝐴 × 𝐵) → ((1st𝑤)𝐹(2nd𝑤)) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2318, 22eqtr3id 2253 . . . . . . 7 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹‘⟨(1st𝑤), (2nd𝑤)⟩) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2417, 23eqtrd 2239 . . . . . 6 (𝑤 ∈ (𝐴 × 𝐵) → (𝐹𝑤) = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩})
2515, 24eqeqan12d 2222 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) ↔ {⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}))
26 fveq1 5587 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅))
27 1stexg 6265 . . . . . . . . . 10 (𝑧 ∈ V → (1st𝑧) ∈ V)
2827elv 2777 . . . . . . . . 9 (1st𝑧) ∈ V
29 fvpr0o 13243 . . . . . . . . 9 ((1st𝑧) ∈ V → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = (1st𝑧))
3028, 29ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘∅) = (1st𝑧)
31 1stexg 6265 . . . . . . . . . 10 (𝑤 ∈ V → (1st𝑤) ∈ V)
3231elv 2777 . . . . . . . . 9 (1st𝑤) ∈ V
33 fvpr0o 13243 . . . . . . . . 9 ((1st𝑤) ∈ V → ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅) = (1st𝑤))
3432, 33ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘∅) = (1st𝑤)
3526, 30, 343eqtr3g 2262 . . . . . . 7 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → (1st𝑧) = (1st𝑤))
36 fveq1 5587 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o))
37 2ndexg 6266 . . . . . . . . . 10 (𝑧 ∈ V → (2nd𝑧) ∈ V)
3837elv 2777 . . . . . . . . 9 (2nd𝑧) ∈ V
39 fvpr1o 13244 . . . . . . . . 9 ((2nd𝑧) ∈ V → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = (2nd𝑧))
4038, 39ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩}‘1o) = (2nd𝑧)
41 2ndexg 6266 . . . . . . . . . 10 (𝑤 ∈ V → (2nd𝑤) ∈ V)
4241elv 2777 . . . . . . . . 9 (2nd𝑤) ∈ V
43 fvpr1o 13244 . . . . . . . . 9 ((2nd𝑤) ∈ V → ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o) = (2nd𝑤))
4442, 43ax-mp 5 . . . . . . . 8 ({⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩}‘1o) = (2nd𝑤)
4536, 40, 443eqtr3g 2262 . . . . . . 7 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → (2nd𝑧) = (2nd𝑤))
4635, 45opeq12d 3832 . . . . . 6 ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩)
477, 16eqeqan12d 2222 . . . . . 6 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
4846, 47imbitrrid 156 . . . . 5 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ({⟨∅, (1st𝑧)⟩, ⟨1o, (2nd𝑧)⟩} = {⟨∅, (1st𝑤)⟩, ⟨1o, (2nd𝑤)⟩} → 𝑧 = 𝑤))
4925, 48sylbid 150 . . . 4 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑤 ∈ (𝐴 × 𝐵)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
5049rgen2 2593 . . 3 𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
51 dff13 5849 . . 3 (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)∀𝑤 ∈ (𝐴 × 𝐵)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
526, 50, 51mpbir2an 945 . 2 𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
53 xpsfrnel 13246 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝑧 Fn 2o ∧ (𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵))
5453simp2bi 1016 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘∅) ∈ 𝐴)
5553simp3bi 1017 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → (𝑧‘1o) ∈ 𝐵)
564xpsfval 13250 . . . . . . 7 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩})
5754, 55, 56syl2anc 411 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ((𝑧‘∅)𝐹(𝑧‘1o)) = {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩})
58 ixpfn 6803 . . . . . . 7 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 Fn 2o)
59 xpsfeq 13247 . . . . . . 7 (𝑧 Fn 2o → {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩} = 𝑧)
6058, 59syl 14 . . . . . 6 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → {⟨∅, (𝑧‘∅)⟩, ⟨1o, (𝑧‘1o)⟩} = 𝑧)
6157, 60eqtr2d 2240 . . . . 5 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o)))
62 rspceov 5999 . . . . 5 (((𝑧‘∅) ∈ 𝐴 ∧ (𝑧‘1o) ∈ 𝐵𝑧 = ((𝑧‘∅)𝐹(𝑧‘1o))) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
6354, 55, 61, 62syl3anc 1250 . . . 4 (𝑧X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏))
6463rgen 2560 . . 3 𝑧X 𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)
65 foov 6105 . . 3 (𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)⟶X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ ∀𝑧X 𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎𝐹𝑏)))
666, 64, 65mpbir2an 945 . 2 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
67 df-f1o 5286 . 2 (𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ∧ 𝐹:(𝐴 × 𝐵)–ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)))
6852, 66, 67mpbir2an 945 1 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  c0 3464  ifcif 3575  {cpr 3638  cop 3640   × cxp 4680   Fn wfn 5274  wf 5275  1-1wf1 5276  ontowfo 5277  1-1-ontowf1o 5278  cfv 5279  (class class class)co 5956  cmpo 5958  1st c1st 6236  2nd c2nd 6237  1oc1o 6507  2oc2o 6508  Xcixp 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-1o 6514  df-2o 6515  df-er 6632  df-ixp 6798  df-en 6840  df-fin 6842
This theorem is referenced by:  xpsfrn  13252  xpsff1o2  13253
  Copyright terms: Public domain W3C validator