Step | Hyp | Ref
| Expression |
1 | | fznn0sub2 10063 |
. . . . . . 7
⊢ (𝑛 ∈ (0...(𝑁 − 𝑗)) → ((𝑁 − 𝑗) − 𝑛) ∈ (0...(𝑁 − 𝑗))) |
2 | 1 | ad2antll 483 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗)))) → ((𝑁 − 𝑗) − 𝑛) ∈ (0...(𝑁 − 𝑗))) |
3 | | fsum0diag2.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) |
4 | 3 | expr 373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑘 ∈ (0...(𝑁 − 𝑗)) → 𝐴 ∈ ℂ)) |
5 | 4 | ralrimiv 2538 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 ∈ ℂ) |
6 | | fsum0diag2.1 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → 𝐵 = 𝐴) |
7 | 6 | eleq1d 2235 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐴 ∈ ℂ)) |
8 | 7 | cbvralv 2692 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(0...(𝑁 − 𝑗))𝐵 ∈ ℂ ↔ ∀𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 ∈ ℂ) |
9 | 5, 8 | sylibr 133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ) |
10 | 9 | adantrr 471 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗)))) → ∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ) |
11 | | nfcsb1v 3078 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 |
12 | 11 | nfel1 2319 |
. . . . . . 7
⊢
Ⅎ𝑥⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ |
13 | | csbeq1a 3054 |
. . . . . . . 8
⊢ (𝑥 = ((𝑁 − 𝑗) − 𝑛) → 𝐵 = ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
14 | 13 | eleq1d 2235 |
. . . . . . 7
⊢ (𝑥 = ((𝑁 − 𝑗) − 𝑛) → (𝐵 ∈ ℂ ↔
⦋((𝑁 −
𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ)) |
15 | 12, 14 | rspc 2824 |
. . . . . 6
⊢ (((𝑁 − 𝑗) − 𝑛) ∈ (0...(𝑁 − 𝑗)) → (∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ →
⦋((𝑁 −
𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ)) |
16 | 2, 10, 15 | sylc 62 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗)))) → ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ) |
17 | | fisum0diag2.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
18 | 16, 17 | fisum0diag 11382 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑛))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
19 | | 0zd 9203 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 0 ∈ ℤ) |
20 | 17 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℤ) |
21 | | elfzelz 9960 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) |
22 | 21 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℤ) |
23 | 20, 22 | zsubcld 9318 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑁 − 𝑗) ∈ ℤ) |
24 | | nfcsb1v 3078 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑘 / 𝑥⦌𝐵 |
25 | 24 | nfel1 2319 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ |
26 | | csbeq1a 3054 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑥⦌𝐵) |
27 | 26 | eleq1d 2235 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ ⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ)) |
28 | 25, 27 | rspc 2824 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 − 𝑗)) → (∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ → ⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ)) |
29 | 9, 28 | mpan9 279 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → ⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ) |
30 | | csbeq1 3048 |
. . . . . . 7
⊢ (𝑘 = ((0 + (𝑁 − 𝑗)) − 𝑛) → ⦋𝑘 / 𝑥⦌𝐵 = ⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵) |
31 | 19, 23, 29, 30 | fisumrev2 11387 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵) |
32 | | elfz3nn0 10050 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈
ℕ0) |
33 | 32 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈
ℕ0) |
34 | 21 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ ℤ) |
35 | | nn0cn 9124 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
36 | | zcn 9196 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℂ) |
37 | | subcl 8097 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑁 − 𝑗) ∈ ℂ) |
38 | 35, 36, 37 | syl2an 287 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
→ (𝑁 − 𝑗) ∈
ℂ) |
39 | 33, 34, 38 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → (𝑁 − 𝑗) ∈ ℂ) |
40 | 39 | addid2d 8048 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → (0 + (𝑁 − 𝑗)) = (𝑁 − 𝑗)) |
41 | 40 | oveq1d 5857 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → ((0 + (𝑁 − 𝑗)) − 𝑛) = ((𝑁 − 𝑗) − 𝑛)) |
42 | 41 | csbeq1d 3052 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → ⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵 = ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
43 | 42 | sumeq2dv 11309 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
44 | 31, 43 | eqtrd 2198 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
45 | 44 | sumeq2dv 11309 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...𝑁)Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
46 | | elfz3nn0 10050 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...𝑁) → 𝑁 ∈
ℕ0) |
47 | 46 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → 𝑁 ∈
ℕ0) |
48 | | addid2 8037 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (0 +
𝑁) = 𝑁) |
49 | 47, 35, 48 | 3syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (0 + 𝑁) = 𝑁) |
50 | 49 | oveq1d 5857 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → ((0 + 𝑁) − 𝑛) = (𝑁 − 𝑛)) |
51 | 50 | oveq2d 5858 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (0...((0 + 𝑁) − 𝑛)) = (0...(𝑁 − 𝑛))) |
52 | 50 | oveq1d 5857 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁 − 𝑛) − 𝑗)) |
53 | 52 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁 − 𝑛) − 𝑗)) |
54 | 46 | ad2antlr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → 𝑁 ∈
ℕ0) |
55 | | elfzelz 9960 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ) |
56 | 55 | ad2antlr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → 𝑛 ∈ ℤ) |
57 | | elfzelz 9960 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...(𝑁 − 𝑛)) → 𝑗 ∈ ℤ) |
58 | 57 | adantl 275 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → 𝑗 ∈ ℤ) |
59 | | zcn 9196 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
60 | | sub32 8132 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝑁 − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) |
61 | 35, 59, 36, 60 | syl3an 1270 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑛 ∈ ℤ
∧ 𝑗 ∈ ℤ)
→ ((𝑁 − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) |
62 | 54, 56, 58, 61 | syl3anc 1228 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → ((𝑁 − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) |
63 | 53, 62 | eqtrd 2198 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) |
64 | 63 | csbeq1d 3052 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → ⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵 = ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
65 | 51, 64 | sumeq12rdv 11314 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...(𝑁 − 𝑛))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
66 | 65 | sumeq2dv 11309 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑛))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) |
67 | 18, 45, 66 | 3eqtr4d 2208 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
68 | | 0zd 9203 |
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) |
69 | | 0zd 9203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 0 ∈ ℤ) |
70 | | elfzelz 9960 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) |
71 | 70 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ) |
72 | 69, 71 | fzfigd 10366 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (0...𝑘) ∈ Fin) |
73 | | elfzuz3 9957 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...𝑘) → 𝑘 ∈ (ℤ≥‘𝑗)) |
74 | 73 | adantl 275 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (ℤ≥‘𝑗)) |
75 | | elfzuz3 9957 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) |
76 | 75 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
77 | 76 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
78 | | elfzuzb 9954 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑗) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) |
79 | 74, 77, 78 | sylanbrc 414 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (𝑗...𝑁)) |
80 | | elfzelz 9960 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℤ) |
81 | 80 | adantl 275 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ) |
82 | 17 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ ℤ) |
83 | 70 | ad2antlr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ) |
84 | | fzsubel 9995 |
. . . . . . . . 9
⊢ (((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 − 𝑗) ∈ ((𝑗 − 𝑗)...(𝑁 − 𝑗)))) |
85 | 81, 82, 83, 81, 84 | syl22anc 1229 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 − 𝑗) ∈ ((𝑗 − 𝑗)...(𝑁 − 𝑗)))) |
86 | 79, 85 | mpbid 146 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈ ((𝑗 − 𝑗)...(𝑁 − 𝑗))) |
87 | | subid 8117 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℂ → (𝑗 − 𝑗) = 0) |
88 | 81, 36, 87 | 3syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑗 − 𝑗) = 0) |
89 | 88 | oveq1d 5857 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑗 − 𝑗)...(𝑁 − 𝑗)) = (0...(𝑁 − 𝑗))) |
90 | 86, 89 | eleqtrd 2245 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈ (0...(𝑁 − 𝑗))) |
91 | | simpll 519 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝜑) |
92 | | fzss2 9999 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑘) → (0...𝑘) ⊆ (0...𝑁)) |
93 | 76, 92 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (0...𝑘) ⊆ (0...𝑁)) |
94 | 93 | sselda 3142 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ (0...𝑁)) |
95 | 91, 94, 9 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ) |
96 | | nfcsb1v 3078 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 |
97 | 96 | nfel1 2319 |
. . . . . . 7
⊢
Ⅎ𝑥⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ |
98 | | csbeq1a 3054 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵) |
99 | 98 | eleq1d 2235 |
. . . . . . 7
⊢ (𝑥 = (𝑘 − 𝑗) → (𝐵 ∈ ℂ ↔ ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ)) |
100 | 97, 99 | rspc 2824 |
. . . . . 6
⊢ ((𝑘 − 𝑗) ∈ (0...(𝑁 − 𝑗)) → (∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ)) |
101 | 90, 95, 100 | sylc 62 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ) |
102 | 72, 101 | fsumcl 11341 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ) |
103 | | oveq2 5850 |
. . . . 5
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → (0...𝑘) = (0...((0 + 𝑁) − 𝑛))) |
104 | | oveq1 5849 |
. . . . . . 7
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → (𝑘 − 𝑗) = (((0 + 𝑁) − 𝑛) − 𝑗)) |
105 | 104 | csbeq1d 3052 |
. . . . . 6
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = ⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
106 | 105 | adantr 274 |
. . . . 5
⊢ ((𝑘 = ((0 + 𝑁) − 𝑛) ∧ 𝑗 ∈ (0...𝑘)) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = ⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
107 | 103, 106 | sumeq12dv 11313 |
. . . 4
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
108 | 68, 17, 102, 107 | fisumrev2 11387 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) |
109 | 67, 108 | eqtr4d 2201 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵) |
110 | | vex 2729 |
. . . . . 6
⊢ 𝑘 ∈ V |
111 | 110, 6 | csbie 3090 |
. . . . 5
⊢
⦋𝑘 /
𝑥⦌𝐵 = 𝐴 |
112 | 111 | a1i 9 |
. . . 4
⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → ⦋𝑘 / 𝑥⦌𝐵 = 𝐴) |
113 | 112 | sumeq2dv 11309 |
. . 3
⊢ (𝑗 ∈ (0...𝑁) → Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴) |
114 | 113 | sumeq2i 11305 |
. 2
⊢
Σ𝑗 ∈
(0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 |
115 | 70 | adantr 274 |
. . . . . 6
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ) |
116 | 80 | adantl 275 |
. . . . . 6
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ) |
117 | 115, 116 | zsubcld 9318 |
. . . . 5
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈ ℤ) |
118 | | fsum0diag2.2 |
. . . . . 6
⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = 𝐶) |
119 | 118 | adantl 275 |
. . . . 5
⊢ (((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) ∧ 𝑥 = (𝑘 − 𝑗)) → 𝐵 = 𝐶) |
120 | 117, 119 | csbied 3091 |
. . . 4
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = 𝐶) |
121 | 120 | sumeq2dv 11309 |
. . 3
⊢ (𝑘 ∈ (0...𝑁) → Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...𝑘)𝐶) |
122 | 121 | sumeq2i 11305 |
. 2
⊢
Σ𝑘 ∈
(0...𝑁)Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶 |
123 | 109, 114,
122 | 3eqtr3g 2222 |
1
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶) |