ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisum0diag2 GIF version

Theorem fisum0diag2 11677
Description: Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘𝑁". (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
fsum0diag2.1 (𝑥 = 𝑘𝐵 = 𝐴)
fsum0diag2.2 (𝑥 = (𝑘𝑗) → 𝐵 = 𝐶)
fsum0diag2.3 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)
fisum0diag2.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
fisum0diag2 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑁   𝜑,𝑗,𝑘   𝐵,𝑘   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑗,𝑘)   𝐵(𝑥,𝑗)   𝐶(𝑗,𝑘)

Proof of Theorem fisum0diag2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fznn0sub2 10232 . . . . . . 7 (𝑛 ∈ (0...(𝑁𝑗)) → ((𝑁𝑗) − 𝑛) ∈ (0...(𝑁𝑗)))
21ad2antll 491 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁𝑗)))) → ((𝑁𝑗) − 𝑛) ∈ (0...(𝑁𝑗)))
3 fsum0diag2.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)
43expr 375 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑘 ∈ (0...(𝑁𝑗)) → 𝐴 ∈ ℂ))
54ralrimiv 2577 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...(𝑁𝑗))𝐴 ∈ ℂ)
6 fsum0diag2.1 . . . . . . . . . 10 (𝑥 = 𝑘𝐵 = 𝐴)
76eleq1d 2273 . . . . . . . . 9 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐴 ∈ ℂ))
87cbvralv 2737 . . . . . . . 8 (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ ↔ ∀𝑘 ∈ (0...(𝑁𝑗))𝐴 ∈ ℂ)
95, 8sylibr 134 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → ∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ)
109adantrr 479 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁𝑗)))) → ∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ)
11 nfcsb1v 3125 . . . . . . . 8 𝑥((𝑁𝑗) − 𝑛) / 𝑥𝐵
1211nfel1 2358 . . . . . . 7 𝑥((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ
13 csbeq1a 3101 . . . . . . . 8 (𝑥 = ((𝑁𝑗) − 𝑛) → 𝐵 = ((𝑁𝑗) − 𝑛) / 𝑥𝐵)
1413eleq1d 2273 . . . . . . 7 (𝑥 = ((𝑁𝑗) − 𝑛) → (𝐵 ∈ ℂ ↔ ((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ))
1512, 14rspc 2870 . . . . . 6 (((𝑁𝑗) − 𝑛) ∈ (0...(𝑁𝑗)) → (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ → ((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ))
162, 10, 15sylc 62 . . . . 5 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁𝑗)))) → ((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ)
17 fisum0diag2.n . . . . 5 (𝜑𝑁 ∈ ℤ)
1816, 17fisum0diag 11671 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...(𝑁𝑛))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
19 0zd 9366 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ∈ ℤ)
2017adantr 276 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
21 elfzelz 10129 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
2221adantl 277 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℤ)
2320, 22zsubcld 9482 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑁𝑗) ∈ ℤ)
24 nfcsb1v 3125 . . . . . . . . . 10 𝑥𝑘 / 𝑥𝐵
2524nfel1 2358 . . . . . . . . 9 𝑥𝑘 / 𝑥𝐵 ∈ ℂ
26 csbeq1a 3101 . . . . . . . . . 10 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
2726eleq1d 2273 . . . . . . . . 9 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝑘 / 𝑥𝐵 ∈ ℂ))
2825, 27rspc 2870 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑗)) → (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ → 𝑘 / 𝑥𝐵 ∈ ℂ))
299, 28mpan9 281 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 / 𝑥𝐵 ∈ ℂ)
30 csbeq1 3095 . . . . . . 7 (𝑘 = ((0 + (𝑁𝑗)) − 𝑛) → 𝑘 / 𝑥𝐵 = ((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵)
3119, 23, 29, 30fisumrev2 11676 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑛 ∈ (0...(𝑁𝑗))((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵)
32 elfz3nn0 10219 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
3332ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℕ0)
3421ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ ℤ)
35 nn0cn 9287 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
36 zcn 9359 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
37 subcl 8253 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑁𝑗) ∈ ℂ)
3835, 36, 37syl2an 289 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑁𝑗) ∈ ℂ)
3933, 34, 38syl2anc 411 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → (𝑁𝑗) ∈ ℂ)
4039addlidd 8204 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → (0 + (𝑁𝑗)) = (𝑁𝑗))
4140oveq1d 5949 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → ((0 + (𝑁𝑗)) − 𝑛) = ((𝑁𝑗) − 𝑛))
4241csbeq1d 3099 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → ((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵 = ((𝑁𝑗) − 𝑛) / 𝑥𝐵)
4342sumeq2dv 11598 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁)) → Σ𝑛 ∈ (0...(𝑁𝑗))((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵 = Σ𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
4431, 43eqtrd 2237 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
4544sumeq2dv 11598 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑗 ∈ (0...𝑁𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
46 elfz3nn0 10219 . . . . . . . . . 10 (𝑛 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
4746adantl 277 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
48 addlid 8193 . . . . . . . . 9 (𝑁 ∈ ℂ → (0 + 𝑁) = 𝑁)
4947, 35, 483syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝑁)) → (0 + 𝑁) = 𝑁)
5049oveq1d 5949 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝑁)) → ((0 + 𝑁) − 𝑛) = (𝑁𝑛))
5150oveq2d 5950 . . . . . 6 ((𝜑𝑛 ∈ (0...𝑁)) → (0...((0 + 𝑁) − 𝑛)) = (0...(𝑁𝑛)))
5250oveq1d 5949 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝑁)) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁𝑛) − 𝑗))
5352adantr 276 . . . . . . . 8 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁𝑛) − 𝑗))
5446ad2antlr 489 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → 𝑁 ∈ ℕ0)
55 elfzelz 10129 . . . . . . . . . 10 (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ)
5655ad2antlr 489 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → 𝑛 ∈ ℤ)
57 elfzelz 10129 . . . . . . . . . 10 (𝑗 ∈ (0...(𝑁𝑛)) → 𝑗 ∈ ℤ)
5857adantl 277 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → 𝑗 ∈ ℤ)
59 zcn 9359 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
60 sub32 8288 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝑁𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
6135, 59, 36, 60syl3an 1291 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ ∧ 𝑗 ∈ ℤ) → ((𝑁𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
6254, 56, 58, 61syl3anc 1249 . . . . . . . 8 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → ((𝑁𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
6353, 62eqtrd 2237 . . . . . . 7 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
6463csbeq1d 3099 . . . . . 6 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵 = ((𝑁𝑗) − 𝑛) / 𝑥𝐵)
6551, 64sumeq12rdv 11603 . . . . 5 ((𝜑𝑛 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵 = Σ𝑗 ∈ (0...(𝑁𝑛))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
6665sumeq2dv 11598 . . . 4 (𝜑 → Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...(𝑁𝑛))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
6718, 45, 663eqtr4d 2247 . . 3 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
68 0zd 9366 . . . 4 (𝜑 → 0 ∈ ℤ)
69 0zd 9366 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 0 ∈ ℤ)
70 elfzelz 10129 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
7170adantl 277 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ)
7269, 71fzfigd 10557 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (0...𝑘) ∈ Fin)
73 elfzuz3 10126 . . . . . . . . . 10 (𝑗 ∈ (0...𝑘) → 𝑘 ∈ (ℤ𝑗))
7473adantl 277 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (ℤ𝑗))
75 elfzuz3 10126 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝑘))
7675adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝑘))
7776adantr 276 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ (ℤ𝑘))
78 elfzuzb 10123 . . . . . . . . 9 (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 ∈ (ℤ𝑗) ∧ 𝑁 ∈ (ℤ𝑘)))
7974, 77, 78sylanbrc 417 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (𝑗...𝑁))
80 elfzelz 10129 . . . . . . . . . 10 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℤ)
8180adantl 277 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ)
8217ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ ℤ)
8370ad2antlr 489 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ)
84 fzsubel 10164 . . . . . . . . 9 (((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘𝑗) ∈ ((𝑗𝑗)...(𝑁𝑗))))
8581, 82, 83, 81, 84syl22anc 1250 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘𝑗) ∈ ((𝑗𝑗)...(𝑁𝑗))))
8679, 85mpbid 147 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ((𝑗𝑗)...(𝑁𝑗)))
87 subid 8273 . . . . . . . . 9 (𝑗 ∈ ℂ → (𝑗𝑗) = 0)
8881, 36, 873syl 17 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑗𝑗) = 0)
8988oveq1d 5949 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑗𝑗)...(𝑁𝑗)) = (0...(𝑁𝑗)))
9086, 89eleqtrd 2283 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ (0...(𝑁𝑗)))
91 simpll 527 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝜑)
92 fzss2 10168 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑘) → (0...𝑘) ⊆ (0...𝑁))
9376, 92syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (0...𝑘) ⊆ (0...𝑁))
9493sselda 3192 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ (0...𝑁))
9591, 94, 9syl2anc 411 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ)
96 nfcsb1v 3125 . . . . . . . 8 𝑥(𝑘𝑗) / 𝑥𝐵
9796nfel1 2358 . . . . . . 7 𝑥(𝑘𝑗) / 𝑥𝐵 ∈ ℂ
98 csbeq1a 3101 . . . . . . . 8 (𝑥 = (𝑘𝑗) → 𝐵 = (𝑘𝑗) / 𝑥𝐵)
9998eleq1d 2273 . . . . . . 7 (𝑥 = (𝑘𝑗) → (𝐵 ∈ ℂ ↔ (𝑘𝑗) / 𝑥𝐵 ∈ ℂ))
10097, 99rspc 2870 . . . . . 6 ((𝑘𝑗) ∈ (0...(𝑁𝑗)) → (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ → (𝑘𝑗) / 𝑥𝐵 ∈ ℂ))
10190, 95, 100sylc 62 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) / 𝑥𝐵 ∈ ℂ)
10272, 101fsumcl 11630 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 ∈ ℂ)
103 oveq2 5942 . . . . 5 (𝑘 = ((0 + 𝑁) − 𝑛) → (0...𝑘) = (0...((0 + 𝑁) − 𝑛)))
104 oveq1 5941 . . . . . . 7 (𝑘 = ((0 + 𝑁) − 𝑛) → (𝑘𝑗) = (((0 + 𝑁) − 𝑛) − 𝑗))
105104csbeq1d 3099 . . . . . 6 (𝑘 = ((0 + 𝑁) − 𝑛) → (𝑘𝑗) / 𝑥𝐵 = (((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
106105adantr 276 . . . . 5 ((𝑘 = ((0 + 𝑁) − 𝑛) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) / 𝑥𝐵 = (((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
107103, 106sumeq12dv 11602 . . . 4 (𝑘 = ((0 + 𝑁) − 𝑛) → Σ𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
10868, 17, 102, 107fisumrev2 11676 . . 3 (𝜑 → Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
10967, 108eqtr4d 2240 . 2 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵)
110 vex 2774 . . . . . 6 𝑘 ∈ V
111110, 6csbie 3138 . . . . 5 𝑘 / 𝑥𝐵 = 𝐴
112111a1i 9 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 / 𝑥𝐵 = 𝐴)
113112sumeq2dv 11598 . . 3 (𝑗 ∈ (0...𝑁) → Σ𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑘 ∈ (0...(𝑁𝑗))𝐴)
114113sumeq2i 11594 . 2 Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴
11570adantr 276 . . . . . 6 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ)
11680adantl 277 . . . . . 6 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ)
117115, 116zsubcld 9482 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ℤ)
118 fsum0diag2.2 . . . . . 6 (𝑥 = (𝑘𝑗) → 𝐵 = 𝐶)
119118adantl 277 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) ∧ 𝑥 = (𝑘𝑗)) → 𝐵 = 𝐶)
120117, 119csbied 3139 . . . 4 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) / 𝑥𝐵 = 𝐶)
121120sumeq2dv 11598 . . 3 (𝑘 ∈ (0...𝑁) → Σ𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑗 ∈ (0...𝑘)𝐶)
122121sumeq2i 11594 . 2 Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶
123109, 114, 1223eqtr3g 2260 1 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  csb 3092  wss 3165  cfv 5268  (class class class)co 5934  cc 7905  0cc0 7907   + caddc 7910  cmin 8225  0cn0 9277  cz 9354  cuz 9630  ...cfz 10112  Σcsu 11583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-disj 4021  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-frec 6467  df-1o 6492  df-oadd 6496  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-fzo 10247  df-seqfrec 10574  df-exp 10665  df-ihash 10902  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-clim 11509  df-sumdc 11584
This theorem is referenced by:  mertensabs  11767  plymullem1  15138
  Copyright terms: Public domain W3C validator