ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisum0diag2 GIF version

Theorem fisum0diag2 11593
Description: Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘𝑁". (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
fsum0diag2.1 (𝑥 = 𝑘𝐵 = 𝐴)
fsum0diag2.2 (𝑥 = (𝑘𝑗) → 𝐵 = 𝐶)
fsum0diag2.3 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)
fisum0diag2.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
fisum0diag2 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑁   𝜑,𝑗,𝑘   𝐵,𝑘   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑗,𝑘)   𝐵(𝑥,𝑗)   𝐶(𝑗,𝑘)

Proof of Theorem fisum0diag2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fznn0sub2 10197 . . . . . . 7 (𝑛 ∈ (0...(𝑁𝑗)) → ((𝑁𝑗) − 𝑛) ∈ (0...(𝑁𝑗)))
21ad2antll 491 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁𝑗)))) → ((𝑁𝑗) − 𝑛) ∈ (0...(𝑁𝑗)))
3 fsum0diag2.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)
43expr 375 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑘 ∈ (0...(𝑁𝑗)) → 𝐴 ∈ ℂ))
54ralrimiv 2566 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...(𝑁𝑗))𝐴 ∈ ℂ)
6 fsum0diag2.1 . . . . . . . . . 10 (𝑥 = 𝑘𝐵 = 𝐴)
76eleq1d 2262 . . . . . . . . 9 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐴 ∈ ℂ))
87cbvralv 2726 . . . . . . . 8 (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ ↔ ∀𝑘 ∈ (0...(𝑁𝑗))𝐴 ∈ ℂ)
95, 8sylibr 134 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → ∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ)
109adantrr 479 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁𝑗)))) → ∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ)
11 nfcsb1v 3114 . . . . . . . 8 𝑥((𝑁𝑗) − 𝑛) / 𝑥𝐵
1211nfel1 2347 . . . . . . 7 𝑥((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ
13 csbeq1a 3090 . . . . . . . 8 (𝑥 = ((𝑁𝑗) − 𝑛) → 𝐵 = ((𝑁𝑗) − 𝑛) / 𝑥𝐵)
1413eleq1d 2262 . . . . . . 7 (𝑥 = ((𝑁𝑗) − 𝑛) → (𝐵 ∈ ℂ ↔ ((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ))
1512, 14rspc 2859 . . . . . 6 (((𝑁𝑗) − 𝑛) ∈ (0...(𝑁𝑗)) → (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ → ((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ))
162, 10, 15sylc 62 . . . . 5 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁𝑗)))) → ((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ)
17 fisum0diag2.n . . . . 5 (𝜑𝑁 ∈ ℤ)
1816, 17fisum0diag 11587 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...(𝑁𝑛))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
19 0zd 9332 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ∈ ℤ)
2017adantr 276 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
21 elfzelz 10094 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
2221adantl 277 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℤ)
2320, 22zsubcld 9447 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑁𝑗) ∈ ℤ)
24 nfcsb1v 3114 . . . . . . . . . 10 𝑥𝑘 / 𝑥𝐵
2524nfel1 2347 . . . . . . . . 9 𝑥𝑘 / 𝑥𝐵 ∈ ℂ
26 csbeq1a 3090 . . . . . . . . . 10 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
2726eleq1d 2262 . . . . . . . . 9 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝑘 / 𝑥𝐵 ∈ ℂ))
2825, 27rspc 2859 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑗)) → (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ → 𝑘 / 𝑥𝐵 ∈ ℂ))
299, 28mpan9 281 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 / 𝑥𝐵 ∈ ℂ)
30 csbeq1 3084 . . . . . . 7 (𝑘 = ((0 + (𝑁𝑗)) − 𝑛) → 𝑘 / 𝑥𝐵 = ((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵)
3119, 23, 29, 30fisumrev2 11592 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑛 ∈ (0...(𝑁𝑗))((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵)
32 elfz3nn0 10184 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
3332ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℕ0)
3421ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ ℤ)
35 nn0cn 9253 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
36 zcn 9325 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
37 subcl 8220 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑁𝑗) ∈ ℂ)
3835, 36, 37syl2an 289 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑁𝑗) ∈ ℂ)
3933, 34, 38syl2anc 411 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → (𝑁𝑗) ∈ ℂ)
4039addlidd 8171 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → (0 + (𝑁𝑗)) = (𝑁𝑗))
4140oveq1d 5934 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → ((0 + (𝑁𝑗)) − 𝑛) = ((𝑁𝑗) − 𝑛))
4241csbeq1d 3088 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → ((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵 = ((𝑁𝑗) − 𝑛) / 𝑥𝐵)
4342sumeq2dv 11514 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁)) → Σ𝑛 ∈ (0...(𝑁𝑗))((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵 = Σ𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
4431, 43eqtrd 2226 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
4544sumeq2dv 11514 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑗 ∈ (0...𝑁𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
46 elfz3nn0 10184 . . . . . . . . . 10 (𝑛 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
4746adantl 277 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
48 addlid 8160 . . . . . . . . 9 (𝑁 ∈ ℂ → (0 + 𝑁) = 𝑁)
4947, 35, 483syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝑁)) → (0 + 𝑁) = 𝑁)
5049oveq1d 5934 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝑁)) → ((0 + 𝑁) − 𝑛) = (𝑁𝑛))
5150oveq2d 5935 . . . . . 6 ((𝜑𝑛 ∈ (0...𝑁)) → (0...((0 + 𝑁) − 𝑛)) = (0...(𝑁𝑛)))
5250oveq1d 5934 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝑁)) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁𝑛) − 𝑗))
5352adantr 276 . . . . . . . 8 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁𝑛) − 𝑗))
5446ad2antlr 489 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → 𝑁 ∈ ℕ0)
55 elfzelz 10094 . . . . . . . . . 10 (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ)
5655ad2antlr 489 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → 𝑛 ∈ ℤ)
57 elfzelz 10094 . . . . . . . . . 10 (𝑗 ∈ (0...(𝑁𝑛)) → 𝑗 ∈ ℤ)
5857adantl 277 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → 𝑗 ∈ ℤ)
59 zcn 9325 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
60 sub32 8255 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝑁𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
6135, 59, 36, 60syl3an 1291 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ ∧ 𝑗 ∈ ℤ) → ((𝑁𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
6254, 56, 58, 61syl3anc 1249 . . . . . . . 8 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → ((𝑁𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
6353, 62eqtrd 2226 . . . . . . 7 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
6463csbeq1d 3088 . . . . . 6 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵 = ((𝑁𝑗) − 𝑛) / 𝑥𝐵)
6551, 64sumeq12rdv 11519 . . . . 5 ((𝜑𝑛 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵 = Σ𝑗 ∈ (0...(𝑁𝑛))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
6665sumeq2dv 11514 . . . 4 (𝜑 → Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...(𝑁𝑛))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
6718, 45, 663eqtr4d 2236 . . 3 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
68 0zd 9332 . . . 4 (𝜑 → 0 ∈ ℤ)
69 0zd 9332 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 0 ∈ ℤ)
70 elfzelz 10094 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
7170adantl 277 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ)
7269, 71fzfigd 10505 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (0...𝑘) ∈ Fin)
73 elfzuz3 10091 . . . . . . . . . 10 (𝑗 ∈ (0...𝑘) → 𝑘 ∈ (ℤ𝑗))
7473adantl 277 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (ℤ𝑗))
75 elfzuz3 10091 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝑘))
7675adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝑘))
7776adantr 276 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ (ℤ𝑘))
78 elfzuzb 10088 . . . . . . . . 9 (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 ∈ (ℤ𝑗) ∧ 𝑁 ∈ (ℤ𝑘)))
7974, 77, 78sylanbrc 417 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (𝑗...𝑁))
80 elfzelz 10094 . . . . . . . . . 10 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℤ)
8180adantl 277 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ)
8217ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ ℤ)
8370ad2antlr 489 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ)
84 fzsubel 10129 . . . . . . . . 9 (((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘𝑗) ∈ ((𝑗𝑗)...(𝑁𝑗))))
8581, 82, 83, 81, 84syl22anc 1250 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘𝑗) ∈ ((𝑗𝑗)...(𝑁𝑗))))
8679, 85mpbid 147 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ((𝑗𝑗)...(𝑁𝑗)))
87 subid 8240 . . . . . . . . 9 (𝑗 ∈ ℂ → (𝑗𝑗) = 0)
8881, 36, 873syl 17 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑗𝑗) = 0)
8988oveq1d 5934 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑗𝑗)...(𝑁𝑗)) = (0...(𝑁𝑗)))
9086, 89eleqtrd 2272 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ (0...(𝑁𝑗)))
91 simpll 527 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝜑)
92 fzss2 10133 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑘) → (0...𝑘) ⊆ (0...𝑁))
9376, 92syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (0...𝑘) ⊆ (0...𝑁))
9493sselda 3180 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ (0...𝑁))
9591, 94, 9syl2anc 411 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ)
96 nfcsb1v 3114 . . . . . . . 8 𝑥(𝑘𝑗) / 𝑥𝐵
9796nfel1 2347 . . . . . . 7 𝑥(𝑘𝑗) / 𝑥𝐵 ∈ ℂ
98 csbeq1a 3090 . . . . . . . 8 (𝑥 = (𝑘𝑗) → 𝐵 = (𝑘𝑗) / 𝑥𝐵)
9998eleq1d 2262 . . . . . . 7 (𝑥 = (𝑘𝑗) → (𝐵 ∈ ℂ ↔ (𝑘𝑗) / 𝑥𝐵 ∈ ℂ))
10097, 99rspc 2859 . . . . . 6 ((𝑘𝑗) ∈ (0...(𝑁𝑗)) → (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ → (𝑘𝑗) / 𝑥𝐵 ∈ ℂ))
10190, 95, 100sylc 62 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) / 𝑥𝐵 ∈ ℂ)
10272, 101fsumcl 11546 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 ∈ ℂ)
103 oveq2 5927 . . . . 5 (𝑘 = ((0 + 𝑁) − 𝑛) → (0...𝑘) = (0...((0 + 𝑁) − 𝑛)))
104 oveq1 5926 . . . . . . 7 (𝑘 = ((0 + 𝑁) − 𝑛) → (𝑘𝑗) = (((0 + 𝑁) − 𝑛) − 𝑗))
105104csbeq1d 3088 . . . . . 6 (𝑘 = ((0 + 𝑁) − 𝑛) → (𝑘𝑗) / 𝑥𝐵 = (((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
106105adantr 276 . . . . 5 ((𝑘 = ((0 + 𝑁) − 𝑛) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) / 𝑥𝐵 = (((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
107103, 106sumeq12dv 11518 . . . 4 (𝑘 = ((0 + 𝑁) − 𝑛) → Σ𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
10868, 17, 102, 107fisumrev2 11592 . . 3 (𝜑 → Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
10967, 108eqtr4d 2229 . 2 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵)
110 vex 2763 . . . . . 6 𝑘 ∈ V
111110, 6csbie 3127 . . . . 5 𝑘 / 𝑥𝐵 = 𝐴
112111a1i 9 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 / 𝑥𝐵 = 𝐴)
113112sumeq2dv 11514 . . 3 (𝑗 ∈ (0...𝑁) → Σ𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑘 ∈ (0...(𝑁𝑗))𝐴)
114113sumeq2i 11510 . 2 Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴
11570adantr 276 . . . . . 6 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ)
11680adantl 277 . . . . . 6 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ)
117115, 116zsubcld 9447 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ℤ)
118 fsum0diag2.2 . . . . . 6 (𝑥 = (𝑘𝑗) → 𝐵 = 𝐶)
119118adantl 277 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) ∧ 𝑥 = (𝑘𝑗)) → 𝐵 = 𝐶)
120117, 119csbied 3128 . . . 4 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) / 𝑥𝐵 = 𝐶)
121120sumeq2dv 11514 . . 3 (𝑘 ∈ (0...𝑁) → Σ𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑗 ∈ (0...𝑘)𝐶)
122121sumeq2i 11510 . 2 Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶
123109, 114, 1223eqtr3g 2249 1 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  csb 3081  wss 3154  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874   + caddc 7877  cmin 8192  0cn0 9243  cz 9320  cuz 9595  ...cfz 10077  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  mertensabs  11683  plymullem1  14927
  Copyright terms: Public domain W3C validator