| Step | Hyp | Ref
 | Expression | 
| 1 |   | fznn0sub2 10203 | 
. . . . . . 7
⊢ (𝑛 ∈ (0...(𝑁 − 𝑗)) → ((𝑁 − 𝑗) − 𝑛) ∈ (0...(𝑁 − 𝑗))) | 
| 2 | 1 | ad2antll 491 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗)))) → ((𝑁 − 𝑗) − 𝑛) ∈ (0...(𝑁 − 𝑗))) | 
| 3 |   | fsum0diag2.3 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) | 
| 4 | 3 | expr 375 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑘 ∈ (0...(𝑁 − 𝑗)) → 𝐴 ∈ ℂ)) | 
| 5 | 4 | ralrimiv 2569 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 ∈ ℂ) | 
| 6 |   | fsum0diag2.1 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → 𝐵 = 𝐴) | 
| 7 | 6 | eleq1d 2265 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐴 ∈ ℂ)) | 
| 8 | 7 | cbvralv 2729 | 
. . . . . . . 8
⊢
(∀𝑥 ∈
(0...(𝑁 − 𝑗))𝐵 ∈ ℂ ↔ ∀𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 ∈ ℂ) | 
| 9 | 5, 8 | sylibr 134 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ) | 
| 10 | 9 | adantrr 479 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗)))) → ∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ) | 
| 11 |   | nfcsb1v 3117 | 
. . . . . . . 8
⊢
Ⅎ𝑥⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 | 
| 12 | 11 | nfel1 2350 | 
. . . . . . 7
⊢
Ⅎ𝑥⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ | 
| 13 |   | csbeq1a 3093 | 
. . . . . . . 8
⊢ (𝑥 = ((𝑁 − 𝑗) − 𝑛) → 𝐵 = ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) | 
| 14 | 13 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = ((𝑁 − 𝑗) − 𝑛) → (𝐵 ∈ ℂ ↔
⦋((𝑁 −
𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ)) | 
| 15 | 12, 14 | rspc 2862 | 
. . . . . 6
⊢ (((𝑁 − 𝑗) − 𝑛) ∈ (0...(𝑁 − 𝑗)) → (∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ →
⦋((𝑁 −
𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ)) | 
| 16 | 2, 10, 15 | sylc 62 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗)))) → ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 ∈ ℂ) | 
| 17 |   | fisum0diag2.n | 
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 18 | 16, 17 | fisum0diag 11606 | 
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑛))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) | 
| 19 |   | 0zd 9338 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 0 ∈ ℤ) | 
| 20 | 17 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈ ℤ) | 
| 21 |   | elfzelz 10100 | 
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) | 
| 22 | 21 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ ℤ) | 
| 23 | 20, 22 | zsubcld 9453 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑁 − 𝑗) ∈ ℤ) | 
| 24 |   | nfcsb1v 3117 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑘 / 𝑥⦌𝐵 | 
| 25 | 24 | nfel1 2350 | 
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ | 
| 26 |   | csbeq1a 3093 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑥⦌𝐵) | 
| 27 | 26 | eleq1d 2265 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ ⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ)) | 
| 28 | 25, 27 | rspc 2862 | 
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 − 𝑗)) → (∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ → ⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ)) | 
| 29 | 9, 28 | mpan9 281 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → ⦋𝑘 / 𝑥⦌𝐵 ∈ ℂ) | 
| 30 |   | csbeq1 3087 | 
. . . . . . 7
⊢ (𝑘 = ((0 + (𝑁 − 𝑗)) − 𝑛) → ⦋𝑘 / 𝑥⦌𝐵 = ⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵) | 
| 31 | 19, 23, 29, 30 | fisumrev2 11611 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵) | 
| 32 |   | elfz3nn0 10190 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈
ℕ0) | 
| 33 | 32 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈
ℕ0) | 
| 34 | 21 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ ℤ) | 
| 35 |   | nn0cn 9259 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) | 
| 36 |   | zcn 9331 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℂ) | 
| 37 |   | subcl 8225 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑁 − 𝑗) ∈ ℂ) | 
| 38 | 35, 36, 37 | syl2an 289 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈ ℤ)
→ (𝑁 − 𝑗) ∈
ℂ) | 
| 39 | 33, 34, 38 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → (𝑁 − 𝑗) ∈ ℂ) | 
| 40 | 39 | addlidd 8176 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → (0 + (𝑁 − 𝑗)) = (𝑁 − 𝑗)) | 
| 41 | 40 | oveq1d 5937 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → ((0 + (𝑁 − 𝑗)) − 𝑛) = ((𝑁 − 𝑗) − 𝑛)) | 
| 42 | 41 | csbeq1d 3091 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁 − 𝑗))) → ⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵 = ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) | 
| 43 | 42 | sumeq2dv 11533 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((0 + (𝑁 − 𝑗)) − 𝑛) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) | 
| 44 | 31, 43 | eqtrd 2229 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) | 
| 45 | 44 | sumeq2dv 11533 | 
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...𝑁)Σ𝑛 ∈ (0...(𝑁 − 𝑗))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) | 
| 46 |   | elfz3nn0 10190 | 
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...𝑁) → 𝑁 ∈
ℕ0) | 
| 47 | 46 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → 𝑁 ∈
ℕ0) | 
| 48 |   | addlid 8165 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (0 +
𝑁) = 𝑁) | 
| 49 | 47, 35, 48 | 3syl 17 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (0 + 𝑁) = 𝑁) | 
| 50 | 49 | oveq1d 5937 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → ((0 + 𝑁) − 𝑛) = (𝑁 − 𝑛)) | 
| 51 | 50 | oveq2d 5938 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (0...((0 + 𝑁) − 𝑛)) = (0...(𝑁 − 𝑛))) | 
| 52 | 50 | oveq1d 5937 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁 − 𝑛) − 𝑗)) | 
| 53 | 52 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁 − 𝑛) − 𝑗)) | 
| 54 | 46 | ad2antlr 489 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → 𝑁 ∈
ℕ0) | 
| 55 |   | elfzelz 10100 | 
. . . . . . . . . 10
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ) | 
| 56 | 55 | ad2antlr 489 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → 𝑛 ∈ ℤ) | 
| 57 |   | elfzelz 10100 | 
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...(𝑁 − 𝑛)) → 𝑗 ∈ ℤ) | 
| 58 | 57 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → 𝑗 ∈ ℤ) | 
| 59 |   | zcn 9331 | 
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) | 
| 60 |   | sub32 8260 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝑁 − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) | 
| 61 | 35, 59, 36, 60 | syl3an 1291 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑛 ∈ ℤ
∧ 𝑗 ∈ ℤ)
→ ((𝑁 − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) | 
| 62 | 54, 56, 58, 61 | syl3anc 1249 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → ((𝑁 − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) | 
| 63 | 53, 62 | eqtrd 2229 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁 − 𝑗) − 𝑛)) | 
| 64 | 63 | csbeq1d 3091 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁 − 𝑛))) → ⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵 = ⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) | 
| 65 | 51, 64 | sumeq12rdv 11538 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...(𝑁 − 𝑛))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) | 
| 66 | 65 | sumeq2dv 11533 | 
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...(𝑁 − 𝑛))⦋((𝑁 − 𝑗) − 𝑛) / 𝑥⦌𝐵) | 
| 67 | 18, 45, 66 | 3eqtr4d 2239 | 
. . 3
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) | 
| 68 |   | 0zd 9338 | 
. . . 4
⊢ (𝜑 → 0 ∈
ℤ) | 
| 69 |   | 0zd 9338 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 0 ∈ ℤ) | 
| 70 |   | elfzelz 10100 | 
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) | 
| 71 | 70 | adantl 277 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ) | 
| 72 | 69, 71 | fzfigd 10523 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (0...𝑘) ∈ Fin) | 
| 73 |   | elfzuz3 10097 | 
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...𝑘) → 𝑘 ∈ (ℤ≥‘𝑗)) | 
| 74 | 73 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (ℤ≥‘𝑗)) | 
| 75 |   | elfzuz3 10097 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) | 
| 76 | 75 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) | 
| 77 | 76 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ (ℤ≥‘𝑘)) | 
| 78 |   | elfzuzb 10094 | 
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑗) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | 
| 79 | 74, 77, 78 | sylanbrc 417 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (𝑗...𝑁)) | 
| 80 |   | elfzelz 10100 | 
. . . . . . . . . 10
⊢ (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℤ) | 
| 81 | 80 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ) | 
| 82 | 17 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ ℤ) | 
| 83 | 70 | ad2antlr 489 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ) | 
| 84 |   | fzsubel 10135 | 
. . . . . . . . 9
⊢ (((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 − 𝑗) ∈ ((𝑗 − 𝑗)...(𝑁 − 𝑗)))) | 
| 85 | 81, 82, 83, 81, 84 | syl22anc 1250 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 − 𝑗) ∈ ((𝑗 − 𝑗)...(𝑁 − 𝑗)))) | 
| 86 | 79, 85 | mpbid 147 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈ ((𝑗 − 𝑗)...(𝑁 − 𝑗))) | 
| 87 |   | subid 8245 | 
. . . . . . . . 9
⊢ (𝑗 ∈ ℂ → (𝑗 − 𝑗) = 0) | 
| 88 | 81, 36, 87 | 3syl 17 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑗 − 𝑗) = 0) | 
| 89 | 88 | oveq1d 5937 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑗 − 𝑗)...(𝑁 − 𝑗)) = (0...(𝑁 − 𝑗))) | 
| 90 | 86, 89 | eleqtrd 2275 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈ (0...(𝑁 − 𝑗))) | 
| 91 |   | simpll 527 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝜑) | 
| 92 |   | fzss2 10139 | 
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑘) → (0...𝑘) ⊆ (0...𝑁)) | 
| 93 | 76, 92 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (0...𝑘) ⊆ (0...𝑁)) | 
| 94 | 93 | sselda 3183 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ (0...𝑁)) | 
| 95 | 91, 94, 9 | syl2anc 411 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ) | 
| 96 |   | nfcsb1v 3117 | 
. . . . . . . 8
⊢
Ⅎ𝑥⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 | 
| 97 | 96 | nfel1 2350 | 
. . . . . . 7
⊢
Ⅎ𝑥⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ | 
| 98 |   | csbeq1a 3093 | 
. . . . . . . 8
⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵) | 
| 99 | 98 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = (𝑘 − 𝑗) → (𝐵 ∈ ℂ ↔ ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ)) | 
| 100 | 97, 99 | rspc 2862 | 
. . . . . 6
⊢ ((𝑘 − 𝑗) ∈ (0...(𝑁 − 𝑗)) → (∀𝑥 ∈ (0...(𝑁 − 𝑗))𝐵 ∈ ℂ → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ)) | 
| 101 | 90, 95, 100 | sylc 62 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ) | 
| 102 | 72, 101 | fsumcl 11565 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 ∈ ℂ) | 
| 103 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → (0...𝑘) = (0...((0 + 𝑁) − 𝑛))) | 
| 104 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → (𝑘 − 𝑗) = (((0 + 𝑁) − 𝑛) − 𝑗)) | 
| 105 | 104 | csbeq1d 3091 | 
. . . . . 6
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = ⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) | 
| 106 | 105 | adantr 276 | 
. . . . 5
⊢ ((𝑘 = ((0 + 𝑁) − 𝑛) ∧ 𝑗 ∈ (0...𝑘)) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = ⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) | 
| 107 | 103, 106 | sumeq12dv 11537 | 
. . . 4
⊢ (𝑘 = ((0 + 𝑁) − 𝑛) → Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) | 
| 108 | 68, 17, 102, 107 | fisumrev2 11611 | 
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑛 ∈ (0...𝑁)Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))⦋(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥⦌𝐵) | 
| 109 | 67, 108 | eqtr4d 2232 | 
. 2
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵) | 
| 110 |   | vex 2766 | 
. . . . . 6
⊢ 𝑘 ∈ V | 
| 111 | 110, 6 | csbie 3130 | 
. . . . 5
⊢
⦋𝑘 /
𝑥⦌𝐵 = 𝐴 | 
| 112 | 111 | a1i 9 | 
. . . 4
⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → ⦋𝑘 / 𝑥⦌𝐵 = 𝐴) | 
| 113 | 112 | sumeq2dv 11533 | 
. . 3
⊢ (𝑗 ∈ (0...𝑁) → Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴) | 
| 114 | 113 | sumeq2i 11529 | 
. 2
⊢
Σ𝑗 ∈
(0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))⦋𝑘 / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 | 
| 115 | 70 | adantr 276 | 
. . . . . 6
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ) | 
| 116 | 80 | adantl 277 | 
. . . . . 6
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ) | 
| 117 | 115, 116 | zsubcld 9453 | 
. . . . 5
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈ ℤ) | 
| 118 |   | fsum0diag2.2 | 
. . . . . 6
⊢ (𝑥 = (𝑘 − 𝑗) → 𝐵 = 𝐶) | 
| 119 | 118 | adantl 277 | 
. . . . 5
⊢ (((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) ∧ 𝑥 = (𝑘 − 𝑗)) → 𝐵 = 𝐶) | 
| 120 | 117, 119 | csbied 3131 | 
. . . 4
⊢ ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → ⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = 𝐶) | 
| 121 | 120 | sumeq2dv 11533 | 
. . 3
⊢ (𝑘 ∈ (0...𝑁) → Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑗 ∈ (0...𝑘)𝐶) | 
| 122 | 121 | sumeq2i 11529 | 
. 2
⊢
Σ𝑘 ∈
(0...𝑁)Σ𝑗 ∈ (0...𝑘)⦋(𝑘 − 𝑗) / 𝑥⦌𝐵 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶 | 
| 123 | 109, 114,
122 | 3eqtr3g 2252 | 
1
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)Σ𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁)Σ𝑗 ∈ (0...𝑘)𝐶) |