Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninffeq GIF version

Theorem nninffeq 14739
Description: Equality of two functions on β„•βˆž which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one, (πœ‘ β†’ βˆ€π‘› ∈ suc Ο‰...). (Contributed by Jim Kingdon, 4-Aug-2023.)
Hypotheses
Ref Expression
nninffeq.f (πœ‘ β†’ 𝐹:β„•βˆžβŸΆβ„•0)
nninffeq.g (πœ‘ β†’ 𝐺:β„•βˆžβŸΆβ„•0)
nninffeq.oo (πœ‘ β†’ (πΉβ€˜(π‘₯ ∈ Ο‰ ↦ 1o)) = (πΊβ€˜(π‘₯ ∈ Ο‰ ↦ 1o)))
nninffeq.n (πœ‘ β†’ βˆ€π‘› ∈ Ο‰ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))))
Assertion
Ref Expression
nninffeq (πœ‘ β†’ 𝐹 = 𝐺)
Distinct variable groups:   𝑖,𝐹,𝑛,π‘₯   𝑖,𝐺,𝑛,π‘₯   πœ‘,𝑖,𝑛,π‘₯

Proof of Theorem nninffeq
Dummy variables 𝑧 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninffeq.f . . 3 (πœ‘ β†’ 𝐹:β„•βˆžβŸΆβ„•0)
21ffnd 5366 . 2 (πœ‘ β†’ 𝐹 Fn β„•βˆž)
3 nninffeq.g . . 3 (πœ‘ β†’ 𝐺:β„•βˆžβŸΆβ„•0)
43ffnd 5366 . 2 (πœ‘ β†’ 𝐺 Fn β„•βˆž)
5 eqid 2177 . . . . . . . 8 (π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…)) = (π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))
6 fveq2 5515 . . . . . . . . . 10 (π‘₯ = 𝑧 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘§))
7 fveq2 5515 . . . . . . . . . 10 (π‘₯ = 𝑧 β†’ (πΊβ€˜π‘₯) = (πΊβ€˜π‘§))
86, 7eqeq12d 2192 . . . . . . . . 9 (π‘₯ = 𝑧 β†’ ((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯) ↔ (πΉβ€˜π‘§) = (πΊβ€˜π‘§)))
98ifbid 3555 . . . . . . . 8 (π‘₯ = 𝑧 β†’ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…) = if((πΉβ€˜π‘§) = (πΊβ€˜π‘§), 1o, βˆ…))
10 simpr 110 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ 𝑧 ∈ β„•βˆž)
11 1onn 6520 . . . . . . . . . 10 1o ∈ Ο‰
1211a1i 9 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ 1o ∈ Ο‰)
13 peano1 4593 . . . . . . . . . 10 βˆ… ∈ Ο‰
1413a1i 9 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ βˆ… ∈ Ο‰)
151ffvelcdmda 5651 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ (πΉβ€˜π‘§) ∈ β„•0)
1615nn0zd 9372 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ (πΉβ€˜π‘§) ∈ β„€)
173ffvelcdmda 5651 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ (πΊβ€˜π‘§) ∈ β„•0)
1817nn0zd 9372 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ (πΊβ€˜π‘§) ∈ β„€)
19 zdceq 9327 . . . . . . . . . 10 (((πΉβ€˜π‘§) ∈ β„€ ∧ (πΊβ€˜π‘§) ∈ β„€) β†’ DECID (πΉβ€˜π‘§) = (πΊβ€˜π‘§))
2016, 18, 19syl2anc 411 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ DECID (πΉβ€˜π‘§) = (πΊβ€˜π‘§))
2112, 14, 20ifcldcd 3570 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ if((πΉβ€˜π‘§) = (πΊβ€˜π‘§), 1o, βˆ…) ∈ Ο‰)
225, 9, 10, 21fvmptd3 5609 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜π‘§) = if((πΉβ€˜π‘§) = (πΊβ€˜π‘§), 1o, βˆ…))
23 1lt2o 6442 . . . . . . . . . . . . 13 1o ∈ 2o
2423a1i 9 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ β„•βˆž) β†’ 1o ∈ 2o)
25 0lt2o 6441 . . . . . . . . . . . . 13 βˆ… ∈ 2o
2625a1i 9 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ β„•βˆž) β†’ βˆ… ∈ 2o)
271ffvelcdmda 5651 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ β„•βˆž) β†’ (πΉβ€˜π‘₯) ∈ β„•0)
2827nn0zd 9372 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ β„•βˆž) β†’ (πΉβ€˜π‘₯) ∈ β„€)
293ffvelcdmda 5651 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ β„•βˆž) β†’ (πΊβ€˜π‘₯) ∈ β„•0)
3029nn0zd 9372 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ β„•βˆž) β†’ (πΊβ€˜π‘₯) ∈ β„€)
31 zdceq 9327 . . . . . . . . . . . . 13 (((πΉβ€˜π‘₯) ∈ β„€ ∧ (πΊβ€˜π‘₯) ∈ β„€) β†’ DECID (πΉβ€˜π‘₯) = (πΊβ€˜π‘₯))
3228, 30, 31syl2anc 411 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ β„•βˆž) β†’ DECID (πΉβ€˜π‘₯) = (πΊβ€˜π‘₯))
3324, 26, 32ifcldcd 3570 . . . . . . . . . . 11 ((πœ‘ ∧ π‘₯ ∈ β„•βˆž) β†’ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…) ∈ 2o)
3433fmpttd 5671 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…)):β„•βˆžβŸΆ2o)
35 2onn 6521 . . . . . . . . . . . 12 2o ∈ Ο‰
3635elexi 2749 . . . . . . . . . . 11 2o ∈ V
37 nninfex 7119 . . . . . . . . . . 11 β„•βˆž ∈ V
3836, 37elmap 6676 . . . . . . . . . 10 ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…)) ∈ (2o β†‘π‘š β„•βˆž) ↔ (π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…)):β„•βˆžβŸΆ2o)
3934, 38sylibr 134 . . . . . . . . 9 (πœ‘ β†’ (π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…)) ∈ (2o β†‘π‘š β„•βˆž))
40 fveq2 5515 . . . . . . . . . . . . 13 (π‘₯ = (𝑀 ∈ Ο‰ ↦ 1o) β†’ (πΉβ€˜π‘₯) = (πΉβ€˜(𝑀 ∈ Ο‰ ↦ 1o)))
41 fveq2 5515 . . . . . . . . . . . . 13 (π‘₯ = (𝑀 ∈ Ο‰ ↦ 1o) β†’ (πΊβ€˜π‘₯) = (πΊβ€˜(𝑀 ∈ Ο‰ ↦ 1o)))
4240, 41eqeq12d 2192 . . . . . . . . . . . 12 (π‘₯ = (𝑀 ∈ Ο‰ ↦ 1o) β†’ ((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯) ↔ (πΉβ€˜(𝑀 ∈ Ο‰ ↦ 1o)) = (πΊβ€˜(𝑀 ∈ Ο‰ ↦ 1o))))
4342ifbid 3555 . . . . . . . . . . 11 (π‘₯ = (𝑀 ∈ Ο‰ ↦ 1o) β†’ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…) = if((πΉβ€˜(𝑀 ∈ Ο‰ ↦ 1o)) = (πΊβ€˜(𝑀 ∈ Ο‰ ↦ 1o)), 1o, βˆ…))
44 infnninf 7121 . . . . . . . . . . . 12 (𝑀 ∈ Ο‰ ↦ 1o) ∈ β„•βˆž
4544a1i 9 . . . . . . . . . . 11 (πœ‘ β†’ (𝑀 ∈ Ο‰ ↦ 1o) ∈ β„•βˆž)
46 nninffeq.oo . . . . . . . . . . . . . 14 (πœ‘ β†’ (πΉβ€˜(π‘₯ ∈ Ο‰ ↦ 1o)) = (πΊβ€˜(π‘₯ ∈ Ο‰ ↦ 1o)))
47 eqidd 2178 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝑀 β†’ 1o = 1o)
4847cbvmptv 4099 . . . . . . . . . . . . . . 15 (π‘₯ ∈ Ο‰ ↦ 1o) = (𝑀 ∈ Ο‰ ↦ 1o)
4948fveq2i 5518 . . . . . . . . . . . . . 14 (πΉβ€˜(π‘₯ ∈ Ο‰ ↦ 1o)) = (πΉβ€˜(𝑀 ∈ Ο‰ ↦ 1o))
5048fveq2i 5518 . . . . . . . . . . . . . 14 (πΊβ€˜(π‘₯ ∈ Ο‰ ↦ 1o)) = (πΊβ€˜(𝑀 ∈ Ο‰ ↦ 1o))
5146, 49, 503eqtr3g 2233 . . . . . . . . . . . . 13 (πœ‘ β†’ (πΉβ€˜(𝑀 ∈ Ο‰ ↦ 1o)) = (πΊβ€˜(𝑀 ∈ Ο‰ ↦ 1o)))
5251iftrued 3541 . . . . . . . . . . . 12 (πœ‘ β†’ if((πΉβ€˜(𝑀 ∈ Ο‰ ↦ 1o)) = (πΊβ€˜(𝑀 ∈ Ο‰ ↦ 1o)), 1o, βˆ…) = 1o)
5352, 11eqeltrdi 2268 . . . . . . . . . . 11 (πœ‘ β†’ if((πΉβ€˜(𝑀 ∈ Ο‰ ↦ 1o)) = (πΊβ€˜(𝑀 ∈ Ο‰ ↦ 1o)), 1o, βˆ…) ∈ Ο‰)
545, 43, 45, 53fvmptd3 5609 . . . . . . . . . 10 (πœ‘ β†’ ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜(𝑀 ∈ Ο‰ ↦ 1o)) = if((πΉβ€˜(𝑀 ∈ Ο‰ ↦ 1o)) = (πΊβ€˜(𝑀 ∈ Ο‰ ↦ 1o)), 1o, βˆ…))
5554, 52eqtrd 2210 . . . . . . . . 9 (πœ‘ β†’ ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜(𝑀 ∈ Ο‰ ↦ 1o)) = 1o)
56 nninffeq.n . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘› ∈ Ο‰ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))))
57 fveq2 5515 . . . . . . . . . . . . . . . 16 (π‘₯ = (𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)) β†’ (πΉβ€˜π‘₯) = (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))))
58 fveq2 5515 . . . . . . . . . . . . . . . 16 (π‘₯ = (𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)) β†’ (πΊβ€˜π‘₯) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))))
5957, 58eqeq12d 2192 . . . . . . . . . . . . . . 15 (π‘₯ = (𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)) β†’ ((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯) ↔ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)))))
6059ifbid 3555 . . . . . . . . . . . . . 14 (π‘₯ = (𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)) β†’ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…) = if((πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))), 1o, βˆ…))
61 nnnninf 7123 . . . . . . . . . . . . . . 15 (𝑛 ∈ Ο‰ β†’ (𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)) ∈ β„•βˆž)
6261ad2antlr 489 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)))) β†’ (𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)) ∈ β„•βˆž)
63 simpr 110 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)))) β†’ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))))
6463iftrued 3541 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)))) β†’ if((πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))), 1o, βˆ…) = 1o)
6564, 11eqeltrdi 2268 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)))) β†’ if((πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))), 1o, βˆ…) ∈ Ο‰)
665, 60, 62, 65fvmptd3 5609 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)))) β†’ ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = if((πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))), 1o, βˆ…))
6766, 64eqtrd 2210 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ Ο‰) ∧ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…)))) β†’ ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = 1o)
6867ex 115 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ Ο‰) β†’ ((πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) β†’ ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = 1o))
6968ralimdva 2544 . . . . . . . . . 10 (πœ‘ β†’ (βˆ€π‘› ∈ Ο‰ (πΉβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = (πΊβ€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) β†’ βˆ€π‘› ∈ Ο‰ ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = 1o))
7056, 69mpd 13 . . . . . . . . 9 (πœ‘ β†’ βˆ€π‘› ∈ Ο‰ ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜(𝑖 ∈ Ο‰ ↦ if(𝑖 ∈ 𝑛, 1o, βˆ…))) = 1o)
7139, 55, 70nninfall 14728 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘§ ∈ β„•βˆž ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜π‘§) = 1o)
7271r19.21bi 2565 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ ((π‘₯ ∈ β„•βˆž ↦ if((πΉβ€˜π‘₯) = (πΊβ€˜π‘₯), 1o, βˆ…))β€˜π‘§) = 1o)
7322, 72eqtr3d 2212 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ if((πΉβ€˜π‘§) = (πΊβ€˜π‘§), 1o, βˆ…) = 1o)
7473adantr 276 . . . . 5 (((πœ‘ ∧ 𝑧 ∈ β„•βˆž) ∧ Β¬ (πΉβ€˜π‘§) = (πΊβ€˜π‘§)) β†’ if((πΉβ€˜π‘§) = (πΊβ€˜π‘§), 1o, βˆ…) = 1o)
75 simpr 110 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ β„•βˆž) ∧ Β¬ (πΉβ€˜π‘§) = (πΊβ€˜π‘§)) β†’ Β¬ (πΉβ€˜π‘§) = (πΊβ€˜π‘§))
7675iffalsed 3544 . . . . 5 (((πœ‘ ∧ 𝑧 ∈ β„•βˆž) ∧ Β¬ (πΉβ€˜π‘§) = (πΊβ€˜π‘§)) β†’ if((πΉβ€˜π‘§) = (πΊβ€˜π‘§), 1o, βˆ…) = βˆ…)
7774, 76eqtr3d 2212 . . . 4 (((πœ‘ ∧ 𝑧 ∈ β„•βˆž) ∧ Β¬ (πΉβ€˜π‘§) = (πΊβ€˜π‘§)) β†’ 1o = βˆ…)
78 1n0 6432 . . . . . 6 1o β‰  βˆ…
7978neii 2349 . . . . 5 Β¬ 1o = βˆ…
8079a1i 9 . . . 4 (((πœ‘ ∧ 𝑧 ∈ β„•βˆž) ∧ Β¬ (πΉβ€˜π‘§) = (πΊβ€˜π‘§)) β†’ Β¬ 1o = βˆ…)
8177, 80pm2.65da 661 . . 3 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ Β¬ Β¬ (πΉβ€˜π‘§) = (πΊβ€˜π‘§))
82 exmiddc 836 . . . 4 (DECID (πΉβ€˜π‘§) = (πΊβ€˜π‘§) β†’ ((πΉβ€˜π‘§) = (πΊβ€˜π‘§) ∨ Β¬ (πΉβ€˜π‘§) = (πΊβ€˜π‘§)))
8320, 82syl 14 . . 3 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ ((πΉβ€˜π‘§) = (πΊβ€˜π‘§) ∨ Β¬ (πΉβ€˜π‘§) = (πΊβ€˜π‘§)))
8481, 83ecased 1349 . 2 ((πœ‘ ∧ 𝑧 ∈ β„•βˆž) β†’ (πΉβ€˜π‘§) = (πΊβ€˜π‘§))
852, 4, 84eqfnfvd 5616 1 (πœ‘ β†’ 𝐹 = 𝐺)
Colors of variables: wff set class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 104   ∨ wo 708  DECID wdc 834   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆ…c0 3422  ifcif 3534   ↦ cmpt 4064  Ο‰com 4589  βŸΆwf 5212  β€˜cfv 5216  (class class class)co 5874  1oc1o 6409  2oc2o 6410   β†‘π‘š cmap 6647  β„•βˆžxnninf 7117  β„•0cn0 9175  β„€cz 9252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1o 6416  df-2o 6417  df-map 6649  df-nninf 7118  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-inn 8919  df-n0 9176  df-z 9253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator