Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninffeq GIF version

Theorem nninffeq 15890
Description: Equality of two functions on which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one, (𝜑 → ∀𝑛 ∈ suc ω...). (Contributed by Jim Kingdon, 4-Aug-2023.)
Hypotheses
Ref Expression
nninffeq.f (𝜑𝐹:ℕ⟶ℕ0)
nninffeq.g (𝜑𝐺:ℕ⟶ℕ0)
nninffeq.oo (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑥 ∈ ω ↦ 1o)))
nninffeq.n (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
Assertion
Ref Expression
nninffeq (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑖,𝐹,𝑛,𝑥   𝑖,𝐺,𝑛,𝑥   𝜑,𝑖,𝑛,𝑥

Proof of Theorem nninffeq
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninffeq.f . . 3 (𝜑𝐹:ℕ⟶ℕ0)
21ffnd 5425 . 2 (𝜑𝐹 Fn ℕ)
3 nninffeq.g . . 3 (𝜑𝐺:ℕ⟶ℕ0)
43ffnd 5425 . 2 (𝜑𝐺 Fn ℕ)
5 eqid 2204 . . . . . . . 8 (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)) = (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))
6 fveq2 5575 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
7 fveq2 5575 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
86, 7eqeq12d 2219 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑧) = (𝐺𝑧)))
98ifbid 3591 . . . . . . . 8 (𝑥 = 𝑧 → if((𝐹𝑥) = (𝐺𝑥), 1o, ∅) = if((𝐹𝑧) = (𝐺𝑧), 1o, ∅))
10 simpr 110 . . . . . . . 8 ((𝜑𝑧 ∈ ℕ) → 𝑧 ∈ ℕ)
11 1onn 6605 . . . . . . . . . 10 1o ∈ ω
1211a1i 9 . . . . . . . . 9 ((𝜑𝑧 ∈ ℕ) → 1o ∈ ω)
13 peano1 4641 . . . . . . . . . 10 ∅ ∈ ω
1413a1i 9 . . . . . . . . 9 ((𝜑𝑧 ∈ ℕ) → ∅ ∈ ω)
151ffvelcdmda 5714 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ℕ0)
1615nn0zd 9492 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ℤ)
173ffvelcdmda 5714 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℕ) → (𝐺𝑧) ∈ ℕ0)
1817nn0zd 9492 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℕ) → (𝐺𝑧) ∈ ℤ)
19 zdceq 9447 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℤ ∧ (𝐺𝑧) ∈ ℤ) → DECID (𝐹𝑧) = (𝐺𝑧))
2016, 18, 19syl2anc 411 . . . . . . . . 9 ((𝜑𝑧 ∈ ℕ) → DECID (𝐹𝑧) = (𝐺𝑧))
2112, 14, 20ifcldcd 3607 . . . . . . . 8 ((𝜑𝑧 ∈ ℕ) → if((𝐹𝑧) = (𝐺𝑧), 1o, ∅) ∈ ω)
225, 9, 10, 21fvmptd3 5672 . . . . . . 7 ((𝜑𝑧 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘𝑧) = if((𝐹𝑧) = (𝐺𝑧), 1o, ∅))
23 1lt2o 6527 . . . . . . . . . . . . 13 1o ∈ 2o
2423a1i 9 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → 1o ∈ 2o)
25 0lt2o 6526 . . . . . . . . . . . . 13 ∅ ∈ 2o
2625a1i 9 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ∅ ∈ 2o)
271ffvelcdmda 5714 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℕ0)
2827nn0zd 9492 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℤ)
293ffvelcdmda 5714 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℕ0)
3029nn0zd 9492 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℤ)
31 zdceq 9447 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℤ ∧ (𝐺𝑥) ∈ ℤ) → DECID (𝐹𝑥) = (𝐺𝑥))
3228, 30, 31syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → DECID (𝐹𝑥) = (𝐺𝑥))
3324, 26, 32ifcldcd 3607 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → if((𝐹𝑥) = (𝐺𝑥), 1o, ∅) ∈ 2o)
3433fmpttd 5734 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)):ℕ⟶2o)
35 2onn 6606 . . . . . . . . . . . 12 2o ∈ ω
3635elexi 2783 . . . . . . . . . . 11 2o ∈ V
37 nninfex 7222 . . . . . . . . . . 11 ∈ V
3836, 37elmap 6763 . . . . . . . . . 10 ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)) ∈ (2o𝑚) ↔ (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)):ℕ⟶2o)
3934, 38sylibr 134 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)) ∈ (2o𝑚))
40 fveq2 5575 . . . . . . . . . . . . 13 (𝑥 = (𝑤 ∈ ω ↦ 1o) → (𝐹𝑥) = (𝐹‘(𝑤 ∈ ω ↦ 1o)))
41 fveq2 5575 . . . . . . . . . . . . 13 (𝑥 = (𝑤 ∈ ω ↦ 1o) → (𝐺𝑥) = (𝐺‘(𝑤 ∈ ω ↦ 1o)))
4240, 41eqeq12d 2219 . . . . . . . . . . . 12 (𝑥 = (𝑤 ∈ ω ↦ 1o) → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o))))
4342ifbid 3591 . . . . . . . . . . 11 (𝑥 = (𝑤 ∈ ω ↦ 1o) → if((𝐹𝑥) = (𝐺𝑥), 1o, ∅) = if((𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)), 1o, ∅))
44 infnninf 7225 . . . . . . . . . . . 12 (𝑤 ∈ ω ↦ 1o) ∈ ℕ
4544a1i 9 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ω ↦ 1o) ∈ ℕ)
46 nninffeq.oo . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑥 ∈ ω ↦ 1o)))
47 eqidd 2205 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → 1o = 1o)
4847cbvmptv 4139 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω ↦ 1o) = (𝑤 ∈ ω ↦ 1o)
4948fveq2i 5578 . . . . . . . . . . . . . 14 (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐹‘(𝑤 ∈ ω ↦ 1o))
5048fveq2i 5578 . . . . . . . . . . . . . 14 (𝐺‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o))
5146, 49, 503eqtr3g 2260 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)))
5251iftrued 3577 . . . . . . . . . . . 12 (𝜑 → if((𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)), 1o, ∅) = 1o)
5352, 11eqeltrdi 2295 . . . . . . . . . . 11 (𝜑 → if((𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)), 1o, ∅) ∈ ω)
545, 43, 45, 53fvmptd3 5672 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑤 ∈ ω ↦ 1o)) = if((𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)), 1o, ∅))
5554, 52eqtrd 2237 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑤 ∈ ω ↦ 1o)) = 1o)
56 nninffeq.n . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
57 fveq2 5575 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) → (𝐹𝑥) = (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
58 fveq2 5575 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) → (𝐺𝑥) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
5957, 58eqeq12d 2219 . . . . . . . . . . . . . . 15 (𝑥 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
6059ifbid 3591 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) → if((𝐹𝑥) = (𝐺𝑥), 1o, ∅) = if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))), 1o, ∅))
61 nnnninf 7227 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ ℕ)
6261ad2antlr 489 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ ℕ)
63 simpr 110 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
6463iftrued 3577 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))), 1o, ∅) = 1o)
6564, 11eqeltrdi 2295 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))), 1o, ∅) ∈ ω)
665, 60, 62, 65fvmptd3 5672 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))), 1o, ∅))
6766, 64eqtrd 2237 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
6867ex 115 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ω) → ((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
6968ralimdva 2572 . . . . . . . . . 10 (𝜑 → (∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ∀𝑛 ∈ ω ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
7056, 69mpd 13 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
7139, 55, 70nninfall 15879 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℕ ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘𝑧) = 1o)
7271r19.21bi 2593 . . . . . . 7 ((𝜑𝑧 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘𝑧) = 1o)
7322, 72eqtr3d 2239 . . . . . 6 ((𝜑𝑧 ∈ ℕ) → if((𝐹𝑧) = (𝐺𝑧), 1o, ∅) = 1o)
7473adantr 276 . . . . 5 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → if((𝐹𝑧) = (𝐺𝑧), 1o, ∅) = 1o)
75 simpr 110 . . . . . 6 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → ¬ (𝐹𝑧) = (𝐺𝑧))
7675iffalsed 3580 . . . . 5 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → if((𝐹𝑧) = (𝐺𝑧), 1o, ∅) = ∅)
7774, 76eqtr3d 2239 . . . 4 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → 1o = ∅)
78 1n0 6517 . . . . . 6 1o ≠ ∅
7978neii 2377 . . . . 5 ¬ 1o = ∅
8079a1i 9 . . . 4 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → ¬ 1o = ∅)
8177, 80pm2.65da 662 . . 3 ((𝜑𝑧 ∈ ℕ) → ¬ ¬ (𝐹𝑧) = (𝐺𝑧))
82 exmiddc 837 . . . 4 (DECID (𝐹𝑧) = (𝐺𝑧) → ((𝐹𝑧) = (𝐺𝑧) ∨ ¬ (𝐹𝑧) = (𝐺𝑧)))
8320, 82syl 14 . . 3 ((𝜑𝑧 ∈ ℕ) → ((𝐹𝑧) = (𝐺𝑧) ∨ ¬ (𝐹𝑧) = (𝐺𝑧)))
8481, 83ecased 1361 . 2 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) = (𝐺𝑧))
852, 4, 84eqfnfvd 5679 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  c0 3459  ifcif 3570  cmpt 4104  ωcom 4637  wf 5266  cfv 5270  (class class class)co 5943  1oc1o 6494  2oc2o 6495  𝑚 cmap 6734  xnninf 7220  0cn0 9294  cz 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1o 6501  df-2o 6502  df-map 6736  df-nninf 7221  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator