| Step | Hyp | Ref
| Expression |
| 1 | | nninffeq.f |
. . 3
⊢ (𝜑 → 𝐹:ℕ∞⟶ℕ0) |
| 2 | 1 | ffnd 5408 |
. 2
⊢ (𝜑 → 𝐹 Fn
ℕ∞) |
| 3 | | nninffeq.g |
. . 3
⊢ (𝜑 → 𝐺:ℕ∞⟶ℕ0) |
| 4 | 3 | ffnd 5408 |
. 2
⊢ (𝜑 → 𝐺 Fn
ℕ∞) |
| 5 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅)) = (𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅)) |
| 6 | | fveq2 5558 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 7 | | fveq2 5558 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝐺‘𝑥) = (𝐺‘𝑧)) |
| 8 | 6, 7 | eqeq12d 2211 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝑧) = (𝐺‘𝑧))) |
| 9 | 8 | ifbid 3582 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅) = if((𝐹‘𝑧) = (𝐺‘𝑧), 1o, ∅)) |
| 10 | | simpr 110 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
𝑧 ∈
ℕ∞) |
| 11 | | 1onn 6578 |
. . . . . . . . . 10
⊢
1o ∈ ω |
| 12 | 11 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
1o ∈ ω) |
| 13 | | peano1 4630 |
. . . . . . . . . 10
⊢ ∅
∈ ω |
| 14 | 13 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
∅ ∈ ω) |
| 15 | 1 | ffvelcdmda 5697 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
(𝐹‘𝑧) ∈
ℕ0) |
| 16 | 15 | nn0zd 9446 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
(𝐹‘𝑧) ∈ ℤ) |
| 17 | 3 | ffvelcdmda 5697 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
(𝐺‘𝑧) ∈
ℕ0) |
| 18 | 17 | nn0zd 9446 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
(𝐺‘𝑧) ∈ ℤ) |
| 19 | | zdceq 9401 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑧) ∈ ℤ ∧ (𝐺‘𝑧) ∈ ℤ) → DECID
(𝐹‘𝑧) = (𝐺‘𝑧)) |
| 20 | 16, 18, 19 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
DECID (𝐹‘𝑧) = (𝐺‘𝑧)) |
| 21 | 12, 14, 20 | ifcldcd 3597 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
if((𝐹‘𝑧) = (𝐺‘𝑧), 1o, ∅) ∈
ω) |
| 22 | 5, 9, 10, 21 | fvmptd3 5655 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
((𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘𝑧) = if((𝐹‘𝑧) = (𝐺‘𝑧), 1o, ∅)) |
| 23 | | 1lt2o 6500 |
. . . . . . . . . . . . 13
⊢
1o ∈ 2o |
| 24 | 23 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ∞) →
1o ∈ 2o) |
| 25 | | 0lt2o 6499 |
. . . . . . . . . . . . 13
⊢ ∅
∈ 2o |
| 26 | 25 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ∞) →
∅ ∈ 2o) |
| 27 | 1 | ffvelcdmda 5697 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ∞) →
(𝐹‘𝑥) ∈
ℕ0) |
| 28 | 27 | nn0zd 9446 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ∞) →
(𝐹‘𝑥) ∈ ℤ) |
| 29 | 3 | ffvelcdmda 5697 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ∞) →
(𝐺‘𝑥) ∈
ℕ0) |
| 30 | 29 | nn0zd 9446 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ∞) →
(𝐺‘𝑥) ∈ ℤ) |
| 31 | | zdceq 9401 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) ∈ ℤ ∧ (𝐺‘𝑥) ∈ ℤ) → DECID
(𝐹‘𝑥) = (𝐺‘𝑥)) |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ∞) →
DECID (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 33 | 24, 26, 32 | ifcldcd 3597 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ∞) →
if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅) ∈
2o) |
| 34 | 33 | fmpttd 5717 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℕ∞ ↦
if((𝐹‘𝑥) = (𝐺‘𝑥), 1o,
∅)):ℕ∞⟶2o) |
| 35 | | 2onn 6579 |
. . . . . . . . . . . 12
⊢
2o ∈ ω |
| 36 | 35 | elexi 2775 |
. . . . . . . . . . 11
⊢
2o ∈ V |
| 37 | | nninfex 7187 |
. . . . . . . . . . 11
⊢
ℕ∞ ∈ V |
| 38 | 36, 37 | elmap 6736 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅)) ∈
(2o ↑𝑚 ℕ∞) ↔
(𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o,
∅)):ℕ∞⟶2o) |
| 39 | 34, 38 | sylibr 134 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℕ∞ ↦
if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅)) ∈
(2o ↑𝑚
ℕ∞)) |
| 40 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑤 ∈ ω ↦ 1o) →
(𝐹‘𝑥) = (𝐹‘(𝑤 ∈ ω ↦
1o))) |
| 41 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑤 ∈ ω ↦ 1o) →
(𝐺‘𝑥) = (𝐺‘(𝑤 ∈ ω ↦
1o))) |
| 42 | 40, 41 | eqeq12d 2211 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑤 ∈ ω ↦ 1o) →
((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘(𝑤 ∈ ω ↦ 1o)) =
(𝐺‘(𝑤 ∈ ω ↦
1o)))) |
| 43 | 42 | ifbid 3582 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑤 ∈ ω ↦ 1o) →
if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅) = if((𝐹‘(𝑤 ∈ ω ↦ 1o)) =
(𝐺‘(𝑤 ∈ ω ↦
1o)), 1o, ∅)) |
| 44 | | infnninf 7190 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ω ↦
1o) ∈ ℕ∞ |
| 45 | 44 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ ω ↦ 1o) ∈
ℕ∞) |
| 46 | | nninffeq.oo |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) =
(𝐺‘(𝑥 ∈ ω ↦
1o))) |
| 47 | | eqidd 2197 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → 1o =
1o) |
| 48 | 47 | cbvmptv 4129 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ω ↦
1o) = (𝑤 ∈
ω ↦ 1o) |
| 49 | 48 | fveq2i 5561 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘(𝑥 ∈ ω ↦ 1o)) =
(𝐹‘(𝑤 ∈ ω ↦
1o)) |
| 50 | 48 | fveq2i 5561 |
. . . . . . . . . . . . . 14
⊢ (𝐺‘(𝑥 ∈ ω ↦ 1o)) =
(𝐺‘(𝑤 ∈ ω ↦
1o)) |
| 51 | 46, 49, 50 | 3eqtr3g 2252 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘(𝑤 ∈ ω ↦ 1o)) =
(𝐺‘(𝑤 ∈ ω ↦
1o))) |
| 52 | 51 | iftrued 3568 |
. . . . . . . . . . . 12
⊢ (𝜑 → if((𝐹‘(𝑤 ∈ ω ↦ 1o)) =
(𝐺‘(𝑤 ∈ ω ↦
1o)), 1o, ∅) = 1o) |
| 53 | 52, 11 | eqeltrdi 2287 |
. . . . . . . . . . 11
⊢ (𝜑 → if((𝐹‘(𝑤 ∈ ω ↦ 1o)) =
(𝐺‘(𝑤 ∈ ω ↦
1o)), 1o, ∅) ∈ ω) |
| 54 | 5, 43, 45, 53 | fvmptd3 5655 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ ℕ∞ ↦
if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘(𝑤 ∈ ω ↦
1o)) = if((𝐹‘(𝑤 ∈ ω ↦ 1o)) =
(𝐺‘(𝑤 ∈ ω ↦
1o)), 1o, ∅)) |
| 55 | 54, 52 | eqtrd 2229 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ ℕ∞ ↦
if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘(𝑤 ∈ ω ↦
1o)) = 1o) |
| 56 | | nninffeq.n |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) |
| 57 | | fveq2 5558 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) → (𝐹‘𝑥) = (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) |
| 58 | | fveq2 5558 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) → (𝐺‘𝑥) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) |
| 59 | 57, 58 | eqeq12d 2211 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅))))) |
| 60 | 59 | ifbid 3582 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) → if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅) = if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))), 1o,
∅)) |
| 61 | | nnnninf 7192 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈
ℕ∞) |
| 62 | 61 | ad2antlr 489 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈
ℕ∞) |
| 63 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) → (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) |
| 64 | 63 | iftrued 3568 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) → if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))), 1o,
∅) = 1o) |
| 65 | 64, 11 | eqeltrdi 2287 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) → if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))), 1o,
∅) ∈ ω) |
| 66 | 5, 60, 62, 65 | fvmptd3 5655 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) → ((𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))), 1o,
∅)) |
| 67 | 66, 64 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) → ((𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o) |
| 68 | 67 | ex 115 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → ((𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) → ((𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o)) |
| 69 | 68 | ralimdva 2564 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) →
∀𝑛 ∈ ω
((𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o)) |
| 70 | 56, 69 | mpd 13 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ω ((𝑥 ∈ ℕ∞ ↦
if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) =
1o) |
| 71 | 39, 55, 70 | nninfall 15653 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ ℕ∞ ((𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘𝑧) =
1o) |
| 72 | 71 | r19.21bi 2585 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
((𝑥 ∈
ℕ∞ ↦ if((𝐹‘𝑥) = (𝐺‘𝑥), 1o, ∅))‘𝑧) =
1o) |
| 73 | 22, 72 | eqtr3d 2231 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
if((𝐹‘𝑧) = (𝐺‘𝑧), 1o, ∅) =
1o) |
| 74 | 73 | adantr 276 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ∞) ∧
¬ (𝐹‘𝑧) = (𝐺‘𝑧)) → if((𝐹‘𝑧) = (𝐺‘𝑧), 1o, ∅) =
1o) |
| 75 | | simpr 110 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ∞) ∧
¬ (𝐹‘𝑧) = (𝐺‘𝑧)) → ¬ (𝐹‘𝑧) = (𝐺‘𝑧)) |
| 76 | 75 | iffalsed 3571 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ∞) ∧
¬ (𝐹‘𝑧) = (𝐺‘𝑧)) → if((𝐹‘𝑧) = (𝐺‘𝑧), 1o, ∅) =
∅) |
| 77 | 74, 76 | eqtr3d 2231 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ∞) ∧
¬ (𝐹‘𝑧) = (𝐺‘𝑧)) → 1o =
∅) |
| 78 | | 1n0 6490 |
. . . . . 6
⊢
1o ≠ ∅ |
| 79 | 78 | neii 2369 |
. . . . 5
⊢ ¬
1o = ∅ |
| 80 | 79 | a1i 9 |
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℕ∞) ∧
¬ (𝐹‘𝑧) = (𝐺‘𝑧)) → ¬ 1o =
∅) |
| 81 | 77, 80 | pm2.65da 662 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
¬ ¬ (𝐹‘𝑧) = (𝐺‘𝑧)) |
| 82 | | exmiddc 837 |
. . . 4
⊢
(DECID (𝐹‘𝑧) = (𝐺‘𝑧) → ((𝐹‘𝑧) = (𝐺‘𝑧) ∨ ¬ (𝐹‘𝑧) = (𝐺‘𝑧))) |
| 83 | 20, 82 | syl 14 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
((𝐹‘𝑧) = (𝐺‘𝑧) ∨ ¬ (𝐹‘𝑧) = (𝐺‘𝑧))) |
| 84 | 81, 83 | ecased 1360 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ ℕ∞) →
(𝐹‘𝑧) = (𝐺‘𝑧)) |
| 85 | 2, 4, 84 | eqfnfvd 5662 |
1
⊢ (𝜑 → 𝐹 = 𝐺) |