Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninffeq GIF version

Theorem nninffeq 14425
Description: Equality of two functions on which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one, (𝜑 → ∀𝑛 ∈ suc ω...). (Contributed by Jim Kingdon, 4-Aug-2023.)
Hypotheses
Ref Expression
nninffeq.f (𝜑𝐹:ℕ⟶ℕ0)
nninffeq.g (𝜑𝐺:ℕ⟶ℕ0)
nninffeq.oo (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑥 ∈ ω ↦ 1o)))
nninffeq.n (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
Assertion
Ref Expression
nninffeq (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑖,𝐹,𝑛,𝑥   𝑖,𝐺,𝑛,𝑥   𝜑,𝑖,𝑛,𝑥

Proof of Theorem nninffeq
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninffeq.f . . 3 (𝜑𝐹:ℕ⟶ℕ0)
21ffnd 5362 . 2 (𝜑𝐹 Fn ℕ)
3 nninffeq.g . . 3 (𝜑𝐺:ℕ⟶ℕ0)
43ffnd 5362 . 2 (𝜑𝐺 Fn ℕ)
5 eqid 2177 . . . . . . . 8 (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)) = (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))
6 fveq2 5511 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
7 fveq2 5511 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
86, 7eqeq12d 2192 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑧) = (𝐺𝑧)))
98ifbid 3555 . . . . . . . 8 (𝑥 = 𝑧 → if((𝐹𝑥) = (𝐺𝑥), 1o, ∅) = if((𝐹𝑧) = (𝐺𝑧), 1o, ∅))
10 simpr 110 . . . . . . . 8 ((𝜑𝑧 ∈ ℕ) → 𝑧 ∈ ℕ)
11 1onn 6515 . . . . . . . . . 10 1o ∈ ω
1211a1i 9 . . . . . . . . 9 ((𝜑𝑧 ∈ ℕ) → 1o ∈ ω)
13 peano1 4590 . . . . . . . . . 10 ∅ ∈ ω
1413a1i 9 . . . . . . . . 9 ((𝜑𝑧 ∈ ℕ) → ∅ ∈ ω)
151ffvelcdmda 5647 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ℕ0)
1615nn0zd 9362 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ℤ)
173ffvelcdmda 5647 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℕ) → (𝐺𝑧) ∈ ℕ0)
1817nn0zd 9362 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℕ) → (𝐺𝑧) ∈ ℤ)
19 zdceq 9317 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℤ ∧ (𝐺𝑧) ∈ ℤ) → DECID (𝐹𝑧) = (𝐺𝑧))
2016, 18, 19syl2anc 411 . . . . . . . . 9 ((𝜑𝑧 ∈ ℕ) → DECID (𝐹𝑧) = (𝐺𝑧))
2112, 14, 20ifcldcd 3569 . . . . . . . 8 ((𝜑𝑧 ∈ ℕ) → if((𝐹𝑧) = (𝐺𝑧), 1o, ∅) ∈ ω)
225, 9, 10, 21fvmptd3 5605 . . . . . . 7 ((𝜑𝑧 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘𝑧) = if((𝐹𝑧) = (𝐺𝑧), 1o, ∅))
23 1lt2o 6437 . . . . . . . . . . . . 13 1o ∈ 2o
2423a1i 9 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → 1o ∈ 2o)
25 0lt2o 6436 . . . . . . . . . . . . 13 ∅ ∈ 2o
2625a1i 9 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ∅ ∈ 2o)
271ffvelcdmda 5647 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℕ0)
2827nn0zd 9362 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℤ)
293ffvelcdmda 5647 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℕ0)
3029nn0zd 9362 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (𝐺𝑥) ∈ ℤ)
31 zdceq 9317 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℤ ∧ (𝐺𝑥) ∈ ℤ) → DECID (𝐹𝑥) = (𝐺𝑥))
3228, 30, 31syl2anc 411 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → DECID (𝐹𝑥) = (𝐺𝑥))
3324, 26, 32ifcldcd 3569 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → if((𝐹𝑥) = (𝐺𝑥), 1o, ∅) ∈ 2o)
3433fmpttd 5667 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)):ℕ⟶2o)
35 2onn 6516 . . . . . . . . . . . 12 2o ∈ ω
3635elexi 2749 . . . . . . . . . . 11 2o ∈ V
37 nninfex 7114 . . . . . . . . . . 11 ∈ V
3836, 37elmap 6671 . . . . . . . . . 10 ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)) ∈ (2o𝑚) ↔ (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)):ℕ⟶2o)
3934, 38sylibr 134 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅)) ∈ (2o𝑚))
40 fveq2 5511 . . . . . . . . . . . . 13 (𝑥 = (𝑤 ∈ ω ↦ 1o) → (𝐹𝑥) = (𝐹‘(𝑤 ∈ ω ↦ 1o)))
41 fveq2 5511 . . . . . . . . . . . . 13 (𝑥 = (𝑤 ∈ ω ↦ 1o) → (𝐺𝑥) = (𝐺‘(𝑤 ∈ ω ↦ 1o)))
4240, 41eqeq12d 2192 . . . . . . . . . . . 12 (𝑥 = (𝑤 ∈ ω ↦ 1o) → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o))))
4342ifbid 3555 . . . . . . . . . . 11 (𝑥 = (𝑤 ∈ ω ↦ 1o) → if((𝐹𝑥) = (𝐺𝑥), 1o, ∅) = if((𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)), 1o, ∅))
44 infnninf 7116 . . . . . . . . . . . 12 (𝑤 ∈ ω ↦ 1o) ∈ ℕ
4544a1i 9 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ ω ↦ 1o) ∈ ℕ)
46 nninffeq.oo . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑥 ∈ ω ↦ 1o)))
47 eqidd 2178 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → 1o = 1o)
4847cbvmptv 4096 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω ↦ 1o) = (𝑤 ∈ ω ↦ 1o)
4948fveq2i 5514 . . . . . . . . . . . . . 14 (𝐹‘(𝑥 ∈ ω ↦ 1o)) = (𝐹‘(𝑤 ∈ ω ↦ 1o))
5048fveq2i 5514 . . . . . . . . . . . . . 14 (𝐺‘(𝑥 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o))
5146, 49, 503eqtr3g 2233 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)))
5251iftrued 3541 . . . . . . . . . . . 12 (𝜑 → if((𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)), 1o, ∅) = 1o)
5352, 11eqeltrdi 2268 . . . . . . . . . . 11 (𝜑 → if((𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)), 1o, ∅) ∈ ω)
545, 43, 45, 53fvmptd3 5605 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑤 ∈ ω ↦ 1o)) = if((𝐹‘(𝑤 ∈ ω ↦ 1o)) = (𝐺‘(𝑤 ∈ ω ↦ 1o)), 1o, ∅))
5554, 52eqtrd 2210 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑤 ∈ ω ↦ 1o)) = 1o)
56 nninffeq.n . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
57 fveq2 5511 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) → (𝐹𝑥) = (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
58 fveq2 5511 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) → (𝐺𝑥) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
5957, 58eqeq12d 2192 . . . . . . . . . . . . . . 15 (𝑥 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
6059ifbid 3555 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) → if((𝐹𝑥) = (𝐺𝑥), 1o, ∅) = if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))), 1o, ∅))
61 nnnninf 7118 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ ℕ)
6261ad2antlr 489 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ ℕ)
63 simpr 110 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
6463iftrued 3541 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))), 1o, ∅) = 1o)
6564, 11eqeltrdi 2268 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))), 1o, ∅) ∈ ω)
665, 60, 62, 65fvmptd3 5605 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = if((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))), 1o, ∅))
6766, 64eqtrd 2210 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ω) ∧ (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
6867ex 115 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ω) → ((𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
6968ralimdva 2544 . . . . . . . . . 10 (𝜑 → (∀𝑛 ∈ ω (𝐹‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = (𝐺‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ∀𝑛 ∈ ω ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o))
7056, 69mpd 13 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘(𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) = 1o)
7139, 55, 70nninfall 14414 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℕ ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘𝑧) = 1o)
7271r19.21bi 2565 . . . . . . 7 ((𝜑𝑧 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ if((𝐹𝑥) = (𝐺𝑥), 1o, ∅))‘𝑧) = 1o)
7322, 72eqtr3d 2212 . . . . . 6 ((𝜑𝑧 ∈ ℕ) → if((𝐹𝑧) = (𝐺𝑧), 1o, ∅) = 1o)
7473adantr 276 . . . . 5 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → if((𝐹𝑧) = (𝐺𝑧), 1o, ∅) = 1o)
75 simpr 110 . . . . . 6 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → ¬ (𝐹𝑧) = (𝐺𝑧))
7675iffalsed 3544 . . . . 5 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → if((𝐹𝑧) = (𝐺𝑧), 1o, ∅) = ∅)
7774, 76eqtr3d 2212 . . . 4 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → 1o = ∅)
78 1n0 6427 . . . . . 6 1o ≠ ∅
7978neii 2349 . . . . 5 ¬ 1o = ∅
8079a1i 9 . . . 4 (((𝜑𝑧 ∈ ℕ) ∧ ¬ (𝐹𝑧) = (𝐺𝑧)) → ¬ 1o = ∅)
8177, 80pm2.65da 661 . . 3 ((𝜑𝑧 ∈ ℕ) → ¬ ¬ (𝐹𝑧) = (𝐺𝑧))
82 exmiddc 836 . . . 4 (DECID (𝐹𝑧) = (𝐺𝑧) → ((𝐹𝑧) = (𝐺𝑧) ∨ ¬ (𝐹𝑧) = (𝐺𝑧)))
8320, 82syl 14 . . 3 ((𝜑𝑧 ∈ ℕ) → ((𝐹𝑧) = (𝐺𝑧) ∨ ¬ (𝐹𝑧) = (𝐺𝑧)))
8481, 83ecased 1349 . 2 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) = (𝐺𝑧))
852, 4, 84eqfnfvd 5612 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  c0 3422  ifcif 3534  cmpt 4061  ωcom 4586  wf 5208  cfv 5212  (class class class)co 5869  1oc1o 6404  2oc2o 6405  𝑚 cmap 6642  xnninf 7112  0cn0 9165  cz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644  df-nninf 7113  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator